

VA 589-704| Construct Infill of Building 26 And **Renovate Specialty Care Clinics**

Robert J. Dole VAMC Wichita, KS 100% BID Set 12/21/2021

Kansas Fire Protection

Kansas Electrical

Kansas Mechanical

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTSSection000110

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
00 01 15	List of Drawing Sheets	05-20
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	11-21
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	11-21
01 33 23	Shop Drawings, Product Data, and Samples	09-22
01 35 26	Safety Requirements	10-22
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 45 29	Testing Laboratory Services	11-18
01 45 35	Special Inspections	06-21
01 57 19	Temporary Environmental Controls	01-21
01 74 19	Construction Waste Management	04-22
01 91 00	General Commissioning Requirements	04-22
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	08-17
02 82 11	Traditional Asbestos Abatement	01-21
02 82 13.13	Glovebag Asbestos Abatement	01-21
02 82 13.19	Asbestos Floor Tile and Mastic Abatement	01-21
02 82 13.21	Asbestos Roofing Abatement	01-21
02 83 33.13	Lead-Based Paint Removal and Disposal	01-21
	DIVISION 03 - CONCRETE	
		0.1 0.1
03 30 00	Cast-in-Place Concrete	01-21
	DIVISION 04 - MASONRY	
04 01 00	Maintenance of Masonry	01-21
04 05 13	Masonry Mortaring	10-17
04 05 16	Masonry Grouting	01-21
04 20 00	Unit Masonry	08-17
	DIVISION US - METALS	
05 12 00	Structural Steel Framing	11-18
05 31 00	Steel Decking	01-21
05 40 00	Cold-Formed Metal Framing	01-21

SECTION NO.	DIVISION AND SECTION TITLES	DATE
05 50 00	Metal Fabrications	08-18
05 51 00	Metal Stairs	01-21
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES - NOT USED	
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 21 13	Thermal Insulation	01-21
07 22 00	Roof and Deck Insulation	01-21
07 24 00	Exterior Insulation and Finish Systems	01-21
07 54 23	Thermoplastic Polyolefin (TPO) Roofing	01-21
07 60 00	Flashing and Sheet Metal	01-21
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	04-22
07 95 13	Expansion Joint Cover Assemblies	01-21
	DIVISION 08 - OPENINGS	
00 11 10	Helley Metel Deeve and Even-	01 01
08 11 13	Hollow Metal Doors and Frames	01-21
08 14 00	Interior Wood Doors	01-21
08 31 13	Access Doors and Frames	01-21
08 34 33	Security Doors and Frames	01-21
00 56 59	Pass Windows	01-21
08 30 39	Deen Hardware	01-21
00 71 00	Dutematic Deer Operators	01-21
	Clazing	01-21
08 90 00	Louvers and Vents	01-21
00 00 00		
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 06 00	Schedule for Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 30 13	Ceramic/Porcelain Tiling	01-21
09 51 00	Acoustical Ceilings	12-18
09 65 13	Resilient Base and Accessories	01-21
09 65 16	Resilient Sheet Flooring	06-22
09 65 19	Resilient Tile Flooring	05-18
09 68 00	Carpeting	01-21
09 91 00	Painting	01-21
	DIVISION 10 - SPECIALTIES	ļ
10.14.00		01 01
10 14 00	Signage	01-21
10 21 23	Cubicle Curtain Tracks	01-21
10 26 00	Wall and Door Protection	01-21
10 28 00	Toilet, Bath, and Laundry Accessories	01-21

SECTION NO.	DIVISION AND SECTION TITLES	DATE
10 44 13	Fire Extinguisher Cabinets	08-18
	DIVISION 11 - EQUIPMENT	
11 41 21	Walk-In Coolers and Freezers	01-21
11 73 00	Ceiling Mounted Patient Lift System	08-20
	DIVISION 12 - FURNISHINGS	
12 32 00	Manufactured Wood Casework	01-21
12 36 00	Countertops	12-18
	DIVISION 13 - SPECIAL CONSTRUCTION	
13 05 41	Seismic Restraint Requirements for Non-Structural	01-21
	Components	
13 49 00	Radiation Protection	01-21
	DIVICION 14 CONTENTS FOUTDEMENT NOT LICED	
	DIVISION 14- CONVERING EQUIPEMENT - NOT USED	
	DIVISION 21- FIRE SUPPRESSION	
21 13 13	Wet-Pipe Sprinkler Systems	06-15
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	09-20
22 05 19	Meters and Gages for Plumbing Piping	09-20
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	11-19
22 13 00	Facility Sanitary and Vent Piping	09-20
22 14 00	Facility Storm Drainage	09-15
22 14 36	Packaged, Submersible, Drainage Pump Units	09-15
	Plumbing Fixtures	09-15
22 61 13.74	Dental Compressed Air Piping	09-20
22 61 19.74	Versuum Custome for Laboratory and Mealtheare Escilition	09-20
	Vacuum Systems for Laboratory and Healthcare Facilities	09-15
22 62 19.74	Can Systema for Laboratory and Healthcare Engilition	09-15
22 03 00	Gas systems for Laboratory and nearthcare facilities	09-13
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-20
23 05 12	General Motor Requirements for HVAC and Steam	02-20
	Generation Equipment	
23 05 41	Noise and Vibration Control for HVAC Piping and	02-20
	Equipment	1

SECTION NO.	DIVISION AND SECTION TITLES	DATE
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	02-20
23 09 23	Direct-Digital Control System for HVAC	09-11
23 10 00	Facility Fuel Systems	04-20
23 21 13	Hydronic Piping	02-20
23 21 23	Hydronic Pumps	02-20
23 22 13	Steam and Condensate Heating Piping	02-20
23 22 23	Steam Condensate Pumps	04-20
23 23 00	Refrigerant Piping	02-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
23 38 13	Commercial-Kitchen Hoods	02-20
23 40 00	HVAC Air Cleaning Devices	03-20
23 64 00	Packaged Water Chillers	03-20
23 74 13	Packaged, Outdoor, Central-Station Air-Handling Units	03-20
23 81 00	Decentralized Unitary HVAC Equipment	03-20
23 82 16	Air Coils	03-20
	DIVISION 25 - INTEGRATED AUTOMATION - NOT USED	
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 13	Medium-Voltage Cables	
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17
26 05 33	Raceway and Boxes for Electrical Systems	01-18
26 05 41	Underground Electrical Construction	01-17
26 05 73	Overcurrent Protective Device Coordination Study	01-18
26 08 00	Commissioning of Electrical Systems	11-16
26 09 23	Lighting Controls	01-18
26 12 19	Pad-Mounted, Liquid-Filled, Medium-Voltage Transformers	
26 22 00	Low-Voltage Transformers	01-18
26 24 13	Distribution Switchboards	11-22
26 24 16	Panelboards	01-18
26 27 26	Wiring Devices	01-18
26 29 11	Motor Controllers	01-18
26 29 21	Enclosed Switches and Circuit Breakers	01-17
26 32 13	Engine Generators	01-18
26 43 13	Surge Protective Devices	01-17
26 51 00	Interior Lighting	01-18
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	09-19
27 05 26	Grounding and Bonding for Communications Systems	06-15

SECTION NO.	DIVISION AND SECTION TITLES	DATE
27 05 33	Raceways and Boxes for Communications Systems	10-18
27 08 00	Commissioning of Communications Systems	11-16
27 10 00	Control, Communication and Signal Wiring	06-15
27 11 00	Communications Equipment Room Fittings	06-15
27 15 00	Communications Structured Cabling	01-16
27 41 31	Master Antenna Television Equipment and Systems	
27 51 16	Public Address and Mass Notification Systems	10-18
27 51 23	Intercommunications and Program Systems	06-15
27 52 23	Nurse Call and Code Blue Systems	10-18
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 05 00	Common Work Results for Electronic Safety and Security	04-18
28 05 13	Conductors and Cables for Electronic Safety and	10-18
	Security	
28 05 26	Grounding and Bonding for Electronic Safety and	09-11
00.05.00.00	Security	00 1 1
28 05 28.33	Conduits and Backboxes for Electronic Safety and	09-11
20 00 00	Commissioning of Electronic Safety and Security Systems	11_16
20 00 00	Commissioning of Electronic Safety and Security Systems	11-10
28 23 00	Video Surveillance	10-11
28 26 00	Flectronic Personal Protection System	09-11
28 31 00	Fire Detection and Alarm	10-11
20 31 00		10 11
	DIVISION 31 - FARTHWORK	
31 20 11	Earthwork (Short Form)	10-12
51 20 11		10 12
	DIVISION 32 - EXTERIOR IMPROVEMENTS - NOT USED	
	DIVISION 33 - UTILITIES - NOT USED	
	DIVISION 34 - TRANSPORTATION - NOT USED	
	DIVISION 48 - Electrical Power Generation - NOT USED	

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
 - Exhaust duct for chemical fume hoods, kitchen hood exhaust (grease) and "wet exhaust" ducts.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - Exposed Duct: Exposed to view in a finished room, exposed to weather.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Reinforcing.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENTNoise Level Requirements.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- G. Section 23 07 11, HVAC, and BOILER PLANT INSULATION: Duct Insulation.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- I. Section 23 34 00, HVAC FANS: Return Air and Exhaust Air Fans.

- J. Section 23 36 00, AIR TERMINAL UNITS: Air Flow Control Valves and Terminal Units.
- K. Section 23 38 13, COMMERCIAL-KITCHEN HOODS.
- L. Section 23 40 00, HVAC AIR CLEANING DEVICES: Air Filters and Filters' Efficiencies.
- M. Section 23 82 16, AIR COILS.
- N. Section 28 31 00, FIRE DETECTION and ALARM

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.

- d. Access sections.
- e. Installation instructions.
- 3. Volume dampers, back draft dampers.
- 4. Upper hanger attachments.
- 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
- 6. Sound attenuators, including pressure drop and acoustic performance.
- Flexible ducts and clamps, with manufacturer's installation instructions.
- 8. Flexible connections.
- 9. Instrument test fittings.
- 10 Details and design analysis of alternate or optional duct systems.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-2017......Minimum Design Loads for Buildings and Other Structures C. American Society for Testing and Materials (ASTM): A167-2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A653-2020.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-2018.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength B209-2021.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C1071-2019..... Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)

E84-2021a.....Standard Test Method for Surface Burning Characteristics of Building Materials

D. National Fire Protection Association (NFPA): 90A-2021.....Standard for the Installation of Air Conditioning and Ventilating Systems

96-2021..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations

E. Sheet Metal and Air Conditioning Contractors National Association
(SMACNA):

3rd Edition -2006.....HVAC Duct Construction Standards, Metal and Flexible

2nd Edition -2012.....HVAC Air Duct Leakage Test Manual 6th Edition -2016.....Fibrous Glass Duct Construction Standards

- F. Underwriters Laboratories, Inc. (UL): 181-2013.....Factory-Made Air Ducts and Air Connectors 555-2006Standard for Fire Dampers 555S-2014....Standard for Smoke Dampers
- PART 2 PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Optional Duct Materials:
 - Grease Duct: Double wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust duct. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and

rectangular duct shown on the drawings will have to be converted to equivalent round size.

- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
 - Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Wet Air Exhaust Ducts and Accessories: Ducts for dishwashers, scullery hood, cart washers, manual cart washers, cage washers, steam sterilizer hoods and orthotics hoods shall be 1.3 mm (18 gage) stainless steel made liquid tight with continuous external weld for all seams and joints. Provide neoprene gaskets at flanged connections. Where ducts are not self draining back to the equipment, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access door in side of duct at drain pockets.
- E. Kitchen and Grill Hood (Ventilator) Exhaust Ducts: Comply with NFPA 96.

- Material: 1.6 mm (16 gage) steel sheet (black iron), ASTM A1011, or
 1.3 mm (18 gage) stainless steel. Use stainless steel for exposed duct in occupied areas. See Optional Duct Materials.
- 2. Construction: Liquid tight with continuous external weld for all seams and joints. Where ducts are not self draining back to the equipment, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access doors or panels for duct cleaning inside of horizontal duct at drain pockets, at 6 m (20 feet) intervals, and at each change of direction.
- 3. Access doors or panels shall be of the same material and thickness of the duct with gaskets and sealants that are rated 815 degrees C (1500 degrees F) and shall be grease-tight.
- 4. Grease Duct: Double-wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown in the drawings will have to be converted to equivalent round size.
- F. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and

performance is equivalent to SMACNA standard gage ducts are submitted.

- a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
- b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- G. VA Type A and B Canopy Hoods, Reagent Grade Water Treatment Room and Battery Charging Room Exhausts: Constructed of 1.3 mm (18 gage) stainless steel.
- H. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- I. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- J. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.

- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless-steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.5 SMOKE DAMPERS

- A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450 m/min (1500 fpm). Maximum static pressure loss: 32 Pa (0.13 inch W.G.).
- B. Maximum air leakage, closed damper: 0.32 cubic meters /min/square meter (4.0 CFM per square foot) at 750 Pa (3-inch W.G.) differential pressure.
- C. Minimum requirements for dampers:
 - Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.

- 2. Frame: Galvanized steel channel with side, top and bottom stops or seals.
- 3. Blades: Galvanized steel, parallel type preferably, 300 mm (12 inch) maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
- 4. Shafts: Galvanized steel.
- 5. Bearings: Nylon, bronze sleeve or ball type.
- 6. Hardware: Zinc plated.
- Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.6 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.7 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 71 degrees C (160 degrees F) fusible link, 3-hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.8 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter

shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.

- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.9 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.10 SOUND ATTENUATING UNITS

A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with

glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.

- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.11 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 300 mm (12 inches) above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in can't strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.12 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.13 SEISMIC RESTRAINT FOR DUCTWORK

Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.14 DUCT MOUNTED THERMOMETER (AIR)

A. Stem Type Thermometers: ASTM E1, 7-inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass

or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.

- B. Thermometer Supports:
 - Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.15 DUCT MOUNTEDTEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.16 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.17 LEAD COVERED DUCT

- A. Sheet Lead: 3.1 mm (1/8 inch) thick, securely installed, free of waves, lumps or wrinkles and with as few joints as possible.
- B. Joints shall be made to obtain X-ray absorption equivalent to adjacent sheet lead and finished smooth and neat.

2.18 ELECTROSTATIC SHIELDING

- A. At the point of penetration of shielded rooms ducts shall be made electrically discontinuous by means of a flexible, nonconductive connection outside shielded room.
- B. Metallic duct portion inside shielded room shall be electrically bonded to shielding.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.

- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.

- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as

determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of 145 km/h (_90_mph).

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 82 16, AIR COILS.
- I. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:

- a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
 - Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - b. Tubular Centrifugal Fans.
 - c. Up-blast kitchen hood exhaust fans.
 - d. Industrial fans.
 - e. Utility fans and vent sets.
 - 3. Prefabricated roof curbs.
- C. Certified Sound power levels for each fan.

- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-2016.....Standards Handbook 210-2016..... Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-2017......Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-2014.....Reverberant Room Method for Sound Testing of Fans C. American Society for Testing and Materials (ASTM): B117-2019.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-2014.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-2017..... Standard Test Methods for Measuring Adhesion by Tape Test G152-2021..... Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-2021..... Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA):

NFPA 96-2021..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations

E. National Sanitation Foundation (NSF):

37-2017Air Curtains for Entrance Ways in Food and Food Service Establishments

F. Underwriters Laboratories, Inc. (UL):

181-2013......Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - SWS1 fans: Arrangement 1, 3, 9 or 10, except for fume hood (H7 or H13) exhaust fans Arrangement 3 shall not be acceptable.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of

200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.

- 5. Belts: Oil resistant, non-sparking and non-static.
- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section 26 29 11, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.
- D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box.
- E. Tubular Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C2 thru 2.2.C9 provide;
 - 1. Housings: Hot rolled steel, one-piece design, incorporating integral guide vanes, motor mounts, bolted access hatch and end flanges. Provide spun inlet bell and screen for unducted inlet and screen for unducted outlet. Provide welded steel, flanged inlet and outlet cones for ducted connection. Provide mounting legs or suspension brackets as required for support. Guide vanes shall straighten the discharge air pattern to provide linear flow.
- F. Industrial Fans: Use where scheduled or in lieu of centrifugal fans for low volume high static service. Construction specifications paragraphs A and C for centrifugal fans shall apply. Provide material handling flat blade type fan wheel.

- G. Utility Fans, Vent Sets and Small Capacity Fans: Class 1 design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300 mm (12 inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron.
- H. Spark Resistant/Explosion Proof Fans: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), provide AMCA construction option: A, B or C as indicated. Drive set shall be comprised of non-static belts for use in an explosive atmosphere. Motor shall be explosion proof type if located in air stream.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration

tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 31 00, HVAC DUCTS and CASINGS.
- H. Section 23 82 16, AIR COILS.

1.3 QUALITY ASSURANCE

Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
- C. Samples: Provide one typical air terminal unit for approval by the Resident Engineer. This unit will be returned to the Contractor after all similar units have been shipped and deemed acceptable at the job site.
- D. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- E. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-2017.....Performance Rating of Air Terminals
- C. National Fire Protection Association (NFPA): 90A-2021.....Standard for the Installation of Air Conditioning and Ventilating Systems
- D. Underwriters Laboratories, Inc. (UL): 181-2013.....Standard for Factory-Made Air Ducts and Air

Connectors

E. American Society for Testing and Materials (ASTM): C 665-2017.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
 - 2. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.

- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.

- 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.
- 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
- 3. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL
SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- D. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- F. Section 23 38 13, COMMERCIAL-KITCHEN HOODS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Diffusers, registers, grilles, and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-2015.....Certification, Rating, and Test Manual 4th

Edition

C. American Society of Civil Engineers (ASCE):

ASCE7-2017.....Minimum Design Loads for Buildings and Other Structures

D. American Society for Testing and Materials (ASTM):

A167-99 2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate,

Sheet and Strip

B209- 2021.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA): 90A-2021.....Standard for the Installation of Air

Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL): 181-2013.....UL Standard for Safety Factory-Made Air Ducts

and Connectors

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 AIR OUTLETS AND INLETS

A. Materials:

- Steel or aluminum. Use aluminum air outlets and inlets for facilities located in high-humidity areas. Exhaust air registers located in combination toilets and shower stalls shall be constructed from aluminum. Provide manufacturer's standard gasket.
- 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck

connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.

- a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
- b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.
- c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.
- d. Slot diffuser/plenum:
 - Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Form slots or use adjustable pattern controllers, to provide stable, horizontal air flow pattern over a wide range of operating conditions.
 - 2) Galvanized steel boot lined with 13 mm (1/2 inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, anti-microbial, and non-friable.
 - 3) Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet duct and plenum size shall be as recommended by the manufacturer.
 - Maximum pressure drop at design flow rate: 37 Pa (0.15 inch W.G.)
- Linear Bar Grilles and Diffusers: Extruded aluminum, manufacturer's standard finish, and positive holding concealed fasteners.
 - a. Margin Frame: Flat, 20 mm (3/4 inch) wide.
 - b. Bars: Minimum 5 mm (3/16 inch) wide by 20 mm (3/4 inch) deep, zero deflection unless otherwise shown. Bar spacing shall be a

23 37 00 - 3 AIR OUTLETS AND INLETS minimum of 3 mm (1/8 inch) on center. Reinforce bars on 450 mm (18 inch) center for sidewall units and on 150 mm (6 inch) center for units installed in floor or sills.

- c. Provide opposed blade damper and equalizing or control grid where shown .
- 3. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- Supply Grilles: Same as registers but without the opposed blade damper.
- 5. Jet Diffusers: Aluminum construction (nozzle and frame) suitable for wall or ceiling mounting or direct mounting on ducts.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
 - 5. Linear Type: To match supply units.
 - 6. Door Grilles: Are furnished with the doors.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.

- b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.
- E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

2.4 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 38 13 COMMERCIAL-KITCHEN HOODS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies food service, grease-extracting, energy saving, exhaust ventilators.

1.2 DEFINATIONS

- A. Ventilator, kitchen hood, hood and canopy; for purposes of this specification section, these terms all have the same definition.
- B. UL Listed grease extractor: a slotted (not mesh) type grease extractor that has been tested and rated by Underwriters Laboratories.
- C. Eyebrow, compensating, short circuit, short cycle types are not allowed.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Restraint of Equipment.
- C. Section 21 10 00, WATER-BASED FIRE-SUPPRESSION SYSTEMS.
- D. Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.
- E. Section 22 11 00, FACILITY WATER DISTRIBUTION.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 34 00, HVAC FANS.
- H. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.

1.4 QUALITY CONTROL

- A. Installer Qualifications: Experienced in food service equipment installation or supervised by an experienced food service equipment installer.
 - 1. Where required to complete equipment installation, electrician and plumber shall be licensed in jurisdiction where project is located.
- B. NSF Compliance: Equipment bears NSF Certification Mark or UL Classification Mark indicating compliance with applicable NSF standards, including NSF/ANSI 2, NSF 2-Supplement, and NSF/ANSI 4.
- C. UL Listing: Equipment has been evaluated according to UL 710, is listed in UL "Heating, Cooling, Ventilating and Cooking Equipment Directory," and is labeled for intended use.

- D. Fire-Protection Systems: Comply with NFPA 96 and NFPA 17A.
- E. Welding: Perform welding according to AWS D9.1M/D9.1.
- F. Seismic Restraint:
 - 1. Comply with requirements in Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
 - Comply with applicable guidelines for seismic restraint of kitchen equipment contained in SMACNA's "Kitchen Ventilation Systems and Food Service Equipment Guidelines," Appendix A.
- G. In-Use Service: At least one factory-authorized service agency for equipment shall be located in the geographical area of the installation and shall have the ability to provide service within 24 hours after receiving a service call.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Include manufacturer's address and telephone number.
 - Include catalog or model numbers, and illustrations and descriptions of ventilators and accessories.
- C. Installation Drawings: Show dimensions; method of assembly; and details of installation, adjoining construction, coordination with service utilities, and other work required for a complete installation.
- D. Field Test Reports: Indicate dates and times of tests and certify test results.
- E. Operating Instructions: Include operating instructions covering operation of all components and maintenance procedures covering proper cleaning and necessary lubrication or adjustments to controls.
- F. LEED Information:
 - LEED (v 3.0) MR Credit 4, Recycled Content: Product data indicating percentages, by weight of post-consumer and post-industrial recycled content for products having recycled content:
 - a. Include statement indicating costs for each product having recycled content.

2. LEED (v 3.0) MR Credit 5, Regional Materials: Manufacturer's data identifying point of origin for products procured within 500 mile radius of the project:

a. Include statement indicating costs for each product submitted.

1.6 WARRANTY

A. Warrant food service equipment to be free from defects in materials and workmanship in accordance with requirements of "Warranty of Construction" article in FAR clause 52.246-21.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Welding Society (AWS): D9.1M/D9.1-2018.....Sheet Metal Welding Code
- C. ASTM International (ASTM): A666-2015.....Standard Specification for Annealed or Cold-Worked Austenitic Stainless-Steel Sheet, Strip,

Plate, and Flat Bar

- D. National Association of Architectural Metal Manufacturers (NAAMM): AMP500-2006......Metal Finishes Manual for Architectural and Metal Products, 2006
- E. NFPA International (NFPA): 96-2021.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations
 - 17A-2021.....Standard for Wet Chemical Extinguishing Systems
- F. NSF International/American National Standards Institute (NSF/ANSI): Standard #2-2019.....Food Service Equipment

Standard #4-2020.....Commercial Cooking, Rethermalization, and Powered Hot Food Holding and Transport Equipment

G. Sheet Metal and Air Conditioning Contractors' National Association
(SMACNA):

1767-2001.....Kitchen Ventilation Systems and Food Service Equipment Fabrication and Installation Guidelines

H. Underwriters Laboratories Inc. (UL):

#710-2021.....Exhaust Hoods for Commercial Cooking Equipment

PART 2 - PRODUCTS

2.1 EXHAUST HOODS

- A. The hood shall be constructed of a minimum of 18 gauge, (type 304) stainless steel with a #3 finish. Hood shall be constructed using the standing seam method for optimum strength. The seams on the canopy shall be welded liquidtight, and all exposed external welds shall be ground and polished to match the original finish of the metal. Lighter material gauges, alternate material types and finishes (400 series stainless steel, cold rolled steel, etc.) and non-liquidtight welding (tack weld, spot weld, etc.) is not acceptable. Construction shall include corrosion-resistant steel framing members for strength. Short circuit style hoods are not allowed. Hood shall be of a design to lower the CFM requirements by at least 20 to 30 percent. This can be accomplished by various internal configurations or air deflectors.
- B. Designer to verify CFM and pressure drop with manufacturer.

INTERNATIONAL MECHANICAL REQUIREMENTS PER	R LINEAR FOOT		
TYPE OF HOOD	CFM		
EXTRA HEAVY-DUTY COOKING APPLIANCES			
Double Island Canopy (per side)	550		
Single Island Canopy	700		
Wall-Mounted Canopy	550		
HEAVY-DUTY COOKING APPLIANCES			
Double Island Canopy (per side)	400		
Single Island Canopy	600		
Wall-Mounted Canopy	400		
MEDIUM-DUTY COOKING APPLIANCES			
Double Island Canopy (per side)	300		
Single Island Canopy	500		
Wall-Mounted Canopy	300		
LIGHT-DUTY COOKING APPLIANCES			
Double Island Canopy (per side)	250		
Single Island Canopy	400		
Wall-Mounted Canopy	200		

C. Hood shall include UL listed and NSF certified grease extractor type, high efficiency cartridge style baffle filters of adequate number and sizes to ensure optimum performance in accordance with manufacturer's published information. The filter housing shall terminate in a pitched, full length grease trough, which shall drain into a removable grease container. Hood shall be provided with one (1) filter removal tool.

- D. Vapor proof, UL Listed, recessed Fluorescent light fixtures shall be prewired to a junction box situated at the top of the hood for field connection. Wiring shall conform to the requirements of the National Electrical Code (NEC #70).
- E. Demand ventilator control system shall be installed in the hood. The demand system shall sense the heat/smoke/vapor and shall vary the speed of the exhaust fan according to the need. The demand system shall utilize various types of sensors to accomplish this, such as exhaust temperature sensor, optic sensor, carbon dioxide sensor and other state of the art sensing devices.
- F. Fire protection systems: Wet chemical with wall-mounted stainless-steel cabinet.
 - Fire-protection system to provide duct, plenum, and surface protection for ventilator and equipment located below ventilator.
 - System interwired with shunt trip breaker and gas solenoid value of equipment located below ventilator for power and fuel shutoff during system actuation.
- G. Options
 - Enclosure Panels: 1.3 mm (0.05 inch) thick stainless steel shall be installed; locate between ventilator top and ceiling on all exposed sides.
 - 2. Back shall be finished.
 - 3. Stainless-steel wall flashing shall be installed on wall behind and on the side(s) of ventilator from wall curb to bottom of ventilator.
 - 4. Remote monitoring of the demand ventilation control showing what is transpiring during the course of a day. Provide remote monitoring of the kitchen ventilation system via the DDC control system. Coordinate interface with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - 5. Fresh air make-up plenum incorporated into the front face of the hood or provided at ceiling line immediately in front of the hood.
- H. Exhaust Ventilator System Requirements:

SYMBOL	Description	Туре

K1301	Ventilator	Single sided- Wall	
К1302	Ventilator	Single sided- Island	
K1303	Ventilator	Dual sided	
K1304	Fire-protection system with remote, wall-mounted pull station(s) located near door(s)	_	

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install ventilators level and plumb with access clearances required for operation, maintenance and cleaning and in accordance with the manufacturer's published documentation.
- B. Coordinate installation of ventilators with overhead supports; see Section 05 50 00, METAL FABRICATIONS.
- C. Interconnect ventilators to service utilities.
- D. Install seismic restraints for equipment.

3.2 FIELD TESTING

- A. Field Testing, General: Following installation, test ventilators for compliance with specified requirements and those of authorities having jurisdiction. Perform testing after air-handling systems have been balanced and adjusted.
- B. Smoke Test:
 - 1. Test Conditions:
 - Perform tests with cooking equipment served by ventilator turned off.
 - b. Perform tests with supply and exhaust fans serving the food service kitchen area turned on.
 - 2. Test Procedure: Move a smoke bomb around the perimeter of cooking equipment at the top surface.
 - 3. Test-Performance Requirements: No visible smoke shall escape from the ventilator canopy into the room.
- C. Demand Ventilator Control Test:
 - 1. Test Conditions:

- a. Perform tests with cooking equipment served by exhaust ventilator turned off.
- b. Perform tests with air-handling units serving food service kitchen turned on.
- 2. Test Procedure: Turn on equipment and measure speed of exhaust fan(s) as equipment heats up. Move a smoke bomb around the perimeter of the cooking equipment at the top surface and continue to measure speed of exhaust fan(s).
- Test-Performance Requirements: Speed of fan(s) should increase/decrease with the severity of the heat or smoke.
- D. Wet Fire Extinguishing System: Test system to verify that equipment operation complies with NFPA 96 and NFPA 17A.

3.3 CLEAN-UP

- A. At completion of the installation, clean and adjust equipment as required to produce ready-for-use condition.
- B. Where stainless-steel surfaces are damaged during installation procedures, repair finishes to match adjoining undamaged surfaces.

3.4 INSTRUCTIONS

Instruct personnel and transmit operating instructions in accordance with requirements.

- - - E N D - - -

SECTION 23 40 00 HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media used filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- D. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS
- E. Section 23 37 00 AIR OUTLETS AND INLETS
- F. Section 23 73 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Resident Engineer, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal

useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.

- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, and UL classification.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 52.2-2017......Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle

Size, including Appendix J

- C. American Society of Mechanical Engineers (ASME): NQA-1-2019.....Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL): 900; Revision 15 July 2015 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

- A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the Resident Engineer.
- B. The Resident Engineer will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.

HVAC Filter Types Table 2.2C					
MERV Value	MERV-A	Application	Particle Size	Thickness /Type	
52.2	ASHRAE 62.2 Appendix J				
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway	
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge	
13	13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge	
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge	

C. HVAC Filter Types

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic

media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.

B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters

shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.

- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

2.5 FILTER HOUSINGS/SUPPORT FRAMES

A. Side Servicing Housings (HVAC Grade)

- Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
- 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. Where installed outdoors, the housing shall be weatherproof and suitable for rooftop/outdoor installation. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of highefficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.
- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.

2.6 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage) range. Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation values to allow differential pressure measurement.

2.7 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions.
- B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the Resident Engineer.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -

23 40 00 - 7 HVAC AIR CLEANING DEVICES

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 64 00 PACKAGED WATER CHILLERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section covers Scroll air-cooled chillers complete with accessories.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- G. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- H. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 21 13, HYDRONIC PIPING.
- K. Section 23 21 23, HYDRONIC PUMPS.
- L. Section 23 23 00, REFRIGERANT PIPING.
- M. Section 23 31 00, HVAC DUCTS and CASINGS
- N. Section 23 81 00, DECENTRALIZED UNITARY HVAC EQUIPMENT.
- O. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 DEFINITION

- A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135.
- C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- D. FTT-10: Echelon Transmitter-Free Topology Transceiver.

1.4 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, and comply with the following.
- B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance.
- C. Comply with AHRI requirements for testing and certification of the chillers.
- D. Refer to paragraph, WARRANTY, Section 00 72 00, GENERAL CONDITIONS, except as noted below:
 - 1. Provide a 5-year motor and compressor warranty to include materials, parts and labor.
- E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard
- G. Refer to ASHRAE Standard 15, Safety Standard for Refrigeration System, for refrigerant vapor detectors and monitor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 370-2015.....Sound Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment 495-2005(R2009).....Refrigerant Liquid Receivers 550/590-2018....Standard for Water Chilling Packages Using the Vapor Compression Cycle 560-2000....Absorption Water Chilling and Water Heating Packages

575-2017...... Methods for Measuring Machinery Sound within Equipment Space

C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

15-2019.....Safety Standard for Mechanical Refrigeration Systems

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-20 GDL 3-1996.....Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems D. American Society of Mechanical Engineers (ASME): CFVC VIII-1 2021ASME Boiler and Pressure Vessel Code, Section VIII, "Pressure Vessels - Division 1" E. American Society of Testing Materials (ASTM): C 534/C534M-2020.....Preformed, Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C 612-2014......Mineral-fiber Block and Board Thermal Insulation F. National Electrical Manufacturing Association (NEMA): Maximum) G. National Fire Protection Association (NFPA): 70-2020.....National Electrical Code H. Underwriters Laboratories, Inc. (UL): 1995-2015..... Heating and Cooling Equipment 1.6 SUBMITTALS A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. B. Manufacturer's Literature and Data. 1. Scroll Air-Cooled water chillers, including motor starters, control panels, and vibration isolators, and remote condenser data shall include the following: a. Rated capacity. b. Pressure drop. c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard. d. Refrigerant e. Fan performance (Air-Cooled Chillers only.) f. Accessories. q. Installation instructions. h. Start-up procedures.

- i. Wiring diagrams, including factory-installed and field-installed wiring.
- j. Sound/Noise data report. Manufacturer shall provide sound ratings. Noise warning labels shall be posted on equipment.
- k. Refrigerant vapor detectors and monitors.
- C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- D. Run test report for all chillers.
- E. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests.
- F. Provide seismic restraints for refrigeration equipment to withstand seismic forces.

PART 2 - PRODUCTS

2.1 SCROLL AIR-COOLED WATER CHILLERS

- A. General: Factory-assembled and-tested rotary-screw or scroll water chillers, complete with evaporator, compressors, motor, starters, integral condenser, and controls mounted on a welded steel base. The chiller unit shall consist of two compressors minimum, but not more than eight, mounted on a single welded steel base. Where compressors are paralleled, not more than two shall be so connected and not less than two independent refrigerant circuits shall be provided. Chiller shall be capable of operating one of the following refrigerants: HCFC-134a or HCFC-410a.
- B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings.
- C. Capacity of a single air-cooled chiller shall not exceed 250 Tons (Standard AHRI Conditions).
- D. Applicable Standard: Chillers shall be rated and certified according to AHRI 550/590, and shall be stamped in compliance with AHRI certification.
- E. Acoustics: Sound pressure levels shall not exceed the following specified levels. The manufacturer shall provide sound treatment if

23 64 00 - 4 PACKAGED WATER CHILLERS required to comply with the specified maximum levels. Testing shall be in accordance with AHRI requirements.

- F. Compressor (Rotary-Screw Type): Positive-displacement oil injected type, direct drive, cast-iron casing, precision-machined for minimum clearance about periphery of rotors. Lubrication system shall provide oil at proper temperature to all moving parts. Capacity control shall be by means of single slide valve to modulate the capacity from 100 to 30 percent of full unit rated capacity without unstable compressor operation. The slide valve shall be hydraulically operated upon the actuation of temperature or pressure sensor.
- G. Compressor (Scroll Type): Three dimensional, positive-displacement, hermetically sealed design, with suction and discharge valves, crankcase oil heater and suction strainer. Compressor shall be mounted on vibration isolators. Rotating parts shall be factory balanced. Lubrication system shall consist of reversible, positive displacement pump, strainer, oil level sight glass, and oil charging valve. Capacity control shall be by on-off compressor cycling of single and multiple compressors.
- H. Refrigerants Circuit: Each circuit shall contain include an expansion valve, refrigerant charging connections, hot-gas muffler, compressor suction and discharge shutoff valves, replaceable-core filter drier, sight glass with moisture indicator, liquid-line solenoid valve and insulated suction line.
- I. Refrigerant and Oil: Sufficient volume of dehydrated refrigerant and lubricating oil shall be provided to permit maximum unit capacity operation before and during tests. Replace refrigerant charge lost during the warranty period, due to equipment failure, without cost to the Government.
- J. Condenser:
 - Air-cooled integral condenser as shown on the drawings and specified hereinafter.
 - Integral Condenser: Condenser coils shall be extended surface fin and tube type, seamless copper tubes with aluminum fins. For corrosion protection, see Paragraph 2.7 below. Condenser coils shall be factory air tested at 3105 kPa (450 psig). Condenser fans

23 64 00 - 5 PACKAGED WATER CHILLERS shall be propeller type, directly connected to motor shaft. Fans shall be statically and dynamically balanced, with wire safety guards. Condenser fan motors with permanently lubricated ball bearings and three-phase thermal overload protection. Unit shall start -18°C (0°F) with external damper assemblies. Units shall have grilles factory mounted to prevent damage to coil surfaces.

- 3. Remote Condenser: Refer to paragraph 2.5
- K. Evaporator: Shell and tube design with seamless copper tubes roller expanded into tube sheets. Designed, tested, and stamped in accordance with applicable portions of ASME Boiler and Pressure Vessel Code, Section VIII, for working pressure produced by the water system, but not less than 1035 kPa (15 psig). Refrigerant side working pressure shall comply with ASHRAE Standard 15. Shell shall be constructed of carbon steel. For the waterside of liquid cooler the performance shall be based on a water velocity not less than 1 m/s (3 fps) with a maximum water velocity of 3 m/s (10 fps) and a fouling factor 0.0000176 $\rm m^2$ degrees C (0.0001 hr. sq. ft.) degrees F/Btu. Evaporator for packaged air-cooled chiller units designed for outdoor installation shall be protected against freeze-up in ambient temperature down to -30 degrees C (-20 degrees F) by a resistance heater cable under insulation with thermostat set to operate below 3 degrees C (37 degrees F) ambient. If electric resistance heater is required and the chiller is connected to emergency power, provide emergency power to the heater cable.
- L. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 20 mm (0.75 inch) minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534.
- M. Refrigerant Receiver: Provide a liquid receiver for chiller units when system refrigerant charge exceeds 80 percent of condenser refrigerant volume. Liquid receivers shall be horizontal-type, designed, fitted, and rated in conformance with AHRI 495. Receiver shall be constructed and tested in conformance with Section VIII D1 of the ASME Boiler and Pressure Vessel Code. Each receiver shall have a storage capacity not less than 20 percent in excess of that required for fully charged system. Each receiver shall be equipped with inlet, outlet drop pipes,

drain plug, purging valve, and relief devices as required by ASHRAE Standard 15.

- N. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 3R enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.
 - 1. Following shall display as a minimum on the panel:
 - a. Date and time.
 - b. Outdoor air temperature.
 - c. Operating and alarm status.
 - d. Entering and leaving water temperature-chilled water
 - e. Operating set points-temperature and pressure.
 - f. Refrigerant temperature and pressure.
 - g. Operating hours.
 - h. Number of starts.
 - i. Current limit set point.
 - j. Maximum motor amperage (percent).
 - 2. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Condenser water temperature.
 - c. Entering and leaving chilled water temperature and control set points.
 - d. Automatic lead-lag switch.
 - 3. Safety Functions: Following conditions shall shut down the chiller and require manual reset to start:
 - a. Loss of chilled water flow.
 - b. Loss of condenser water flow (for water-cooled chillers only).
 - c. Low chilled water temperature.
 - d. Compressor motor current-overload protection.
 - e. Freeze protection (for air-cooled chillers).
 - f. Starter fault.
 - g. High or low oil pressure.
 - h. Recycling pumpdown.

- O. The chiller control panel shall provide leaving chilled water temperature reset based on outdoor air temperature 4-20 ma or 0-10 VDC signal from Energy Control Center (ECC).
- P. Provide contacts for remote start/stop, alarm for abnormal operation or shutdown, and for Engineering Control Center (ECC) .
- Q. Auxiliary hydronic system and the chiller(s) shall be interlocked to provide time delay and start sequencing as indicated on control drawings.
- R. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Compressor motor furnished with the chiller shall be in accordance with the chiller manufacturer and the electrical specification Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT. Starting torque of motors shall be suitable for driven machines.
- S. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Provide a starter in NEMA I enclosure, designed for floor or unit mounted chiller using multiple compressors, with the lead compressor starting at its minimum capacity may be provided with across-the-line starter. See Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for additional requirements.

2.4 CONDENSING UNITS FOR AIR CONDITIONING SERVICE

Refer to Section 23 81 00 DECENTRALIZED UNITARY HVAC EQUIPMENT.

2.5 CONDENSERS

- A. Air-Cooled Condensers: Suitable for remote installation in a weather-protected casing. For multiple compressors chiller units, provide a separate air-cooled condenser to match the compressor:
 - Condenser coils shall be extended surface fin and tube type, seamless copper tubes with aluminum fins. See Paragraph 2.7 below for corrosion protection
 - 2. Fans shall be either housed-centrifugal or plenum or propeller type as best suited for application, directly connected to motor shaft or indirectly connected to motor by means of a V-belt drive. Fans shall be statically and dynamically balanced.

- 3. Discharge air from each air-cooled condenser in vertical direction either directly from fan casing or by means of supplementary wind deflectors.
- 4. Condenser Controls: Provide head pressure controls for operation of the system down to 5 degrees C (40 degrees F) by cycling the fans.
- B. Refrigerant Piping: Refrigerant piping shall be as specified in specification Section 23 23 00, REFRIGERANT PIPING.

2.6 REFRIGERANT MONITORING AND SAFETY EQUIPMENT

- A. General: Provide refrigerant monitoring sensor/alarm system and safety equipment as specified here. Refrigerant sensor and alarm system shall comply with ASHRAE Standard 15. The refrigerant monitoring system will be provided by the chiller manufacturer and shall be interfaced with the DDC control system.
- B. Refrigerant monitor shall continuously display the specific gas (refrigerant used) concentration; shall be capable of indicating, alarming and shutting down equipment; and automatically activating ventilation system. On leak detection by refrigerant sensor(s), the following shall occur:
 - 1. Activate machinery (chiller) room ventilation.
 - Activate visual and audio alarm inside and outside of machinery room, with beacon light(s) and horn sounds equipment room and outside equipment room door(s). Shut down combustion process where combustion equipment is employed in the machinery room.
 - 3. Notify Engineering Control Center (ECC) of the alarm condition.
- C. Refrigerant monitor shall be capable of detecting concentration of 1 part per million (ppm) for low-level detection and for insuring the safety of operators. It shall be supplied factory-calibrated for the apparent refrigerant.
- D. Monitor design and construction shall be compatible with temperature, humidity, barometric pressure, and voltage fluctuations of the machinery room operating environment.

2.7 CORROSION PROTECTION

A. Remote Outdoor Condenser Coils: Epoxy Immersion Coating - Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-

> 23 64 00 - 9 PACKAGED WATER CHILLERS

osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The coating process shall be such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:

- 1. Salt Spray Resistance (Minimum 6,000 Hours)
- 2. Humidity Resistance (Minimum 1,000 Hours)
- 3. Water Immersion (Minimum 260 Hours)
- 4. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
- 5. Impact Resistance (Up to 160 Inch/Pound)
- B. Exposed Outdoor Cabinet: Casing Surfaces (Exterior and Interior): All exposed and accessible metal surfaces shall be protected with a waterreducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) AND 500 hours UV resistance (ASTM D4587)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation.

3.2 EQUIPMENT INSTALLATION

- A. Install chiller on concrete base with isolation pads or vibration isolators.
 - Concrete base is specified in Section 03 30 00, CAST-IN-PLACE CONCRETE

- Vibration isolator types and installation requirements are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- 3. Anchor chiller to concrete base according to manufacturer's written instructions and for seismic restraint on vibration isolators.
- 4. Charge the chiller with refrigerant, if not factory charged.
- 5. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements.
- 6. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc.
- B. Install refrigerant monitoring and safety equipment in accordance with ASHRAE Standard 15.
- C. Install refrigerant piping as specified in Section 23 23 00, REFRIGERANT PIPING and ASHRAE Standard 15.
- D. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings.
- E. Piping Connections:
 - Make piping connections to the chiller for chilled water, condenser water, and other connections as necessary for proper operation and maintenance of the equipment.
 - 2. Make equipment connections with flanges and couplings for easy removal and replacement of equipment from the equipment room.
 - 3. Extend vent piping from the relief valve and purge system to the outside.

3.3 STARTUP AND TESTING

- A. Engage manufacturer's factory-trained representative to perform startup and testing service.
- B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections.
- C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the COR that the equipment operate and perform as intended.

- 1. Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak.
- 2. Check bearing lubrication and oil levels.
- 3. Verify proper motor rotation.
- 4. Verify pumps associated with chillers are installed and operational.
- 5. Verify thermometers and gages are installed.
- Verify purge system, if installed, is functional and relief piping is routed outdoor.
- 7. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance.
- Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller.
- 9. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment.
- 10. Prepare a written report outlining the results of tests and inspections, and submit it to the COR.
- D. Engage manufacturer's certified factory trained representative to provide training for 16 hours for the VA maintenance and operational personnel to adjust, operate and maintain equipment, including selfcontained breathing apparatus.
- E. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.
- F. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

3.4 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units. Coordinate this training with that of the cooling tower, if furnished together.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 74 13

PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof top air handling units including integral components specified herein.
- B. Definitions: Roof Top Air Handling Unit(Roof Top Units, RTU): A factory fabricated assembly consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 07 11, HVAC and BOILER PLANT INSULATION.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Section 23 21 13, HYDRONIC PIPING
- K. Section 23 31 00, HVAC DUCTS and CASINGS.
- L. Section 23 34 00, HVAC FANS.
- M. Section 23 40 00, HVAC AIR CLEANING DEVICES.
- N. Section 23 82 16, AIR COILS.
- O. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Air Handling Units Certification

- Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
- 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 410, AHRI 430, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including PlenumFans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4 SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish a complete submission for all roof top units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - Submittals for RTUs shall include fans, drives, motors, coils, humidifiers, mixing box with outside/return air dampers, filter

housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc) and rigging points.

- 2. Submittal drawings of section or component only, will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details; if the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for fan and at entrance and discharge of RTUs at scheduled conditions. Include sound attenuator capacities and itemized internal component attenuation. Internal lining of supply air ductwork with sound absorbing material is not permitted. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute) and 110 percent of design static pressure.
- 5. Submit total fan static pressure, external static pressure, for RTU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter

replacement, motor and drive replacement, spare part lists, and wiring diagrams.

- D. Submit written test procedures two weeks prior to factory testing. Submit written results of factory tests for approval prior to shipping.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
 - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
 - 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-20 B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 260-2017.....Sound Rating of Ducted Air Moving and Conditioning Equipment 410-2001.....Standard for Forced-Circulation Air-Heating and Air-Cooling Coils 430-2014.....Standard for Central Station Air Handling Units DCAACP2008.....Directory of Certified Applied Air Conditioning

Products

- C. Air Moving and Conditioning Association (AMCA):
 210-2016.....Laboratory Methods of Testing Fans for Rating
 D. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA):
- 9-2015..........Load Ratings and Fatigue life for Ball Bearings E. American Society of Heating, Refrigerating and Air Conditioning
- Engineers (ASHRAE):
- 51-2016.....Laboratory Methods of Testing Fans for Rating F. American Society for Testing and Materials (ASTM):
- A653/653M-2019.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
 - B117-2018.....Salt Spray (Fog) Testing
 - C1071-2019..... Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)
 - D1654-2016.....Standard Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
 - D1735-2014.....Water Resistance of Coatings Using Water Fog
 Apparatus
 - D3359-2017..... Standard Test Methods for Measuring Adhesion by Tape Test
 - E84-2021.....Standard Test Method for Surface Burning Characteristics of Building Materials
- G. Military Specifications (Mil. Spec.): DOD-P-21035A-2014.....Paint, High Zinc Dust Content, Galvanizing Repair

- H. National Fire Protection Association (NFPA): 90A-2021.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- I. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 ROOF TOP AIR HANDLING UNITS

- A. General:
 - Roof top units (RTU) shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in drawthrough configuration. Casing is specified in paragraph 2.1.C. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
 - 2. The contractor and the RTU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
 - 3. RTUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.

- 4. The RTU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 Pa (8 inches water gage) or higher.
- 7. Corrosion Protection:
 - a. Coil Treatment: Epoxy Immersion Coating-Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be

maintained by ensuring compliance to the applicable ASTM Standards for the following:

- 1) Salt Spray Resistance (Minimum 6,000 Hours)
- 2) Humidity Resistance (Minimum 1,000 Hours)
- 3) Water Immersion (Minimum 260 Hours)
- 4) Cross-Hatch Adhesion (Minimum 4B-5B Rating)
- 5) Impact Resistance (Up to 160 Inch/Pound)
- b. Casing Surfaces (Exterior and Interior): All exposed and accessible exterior and interior metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) and 500 hours UV resistance (ASTM D4587).
- B. Base:
 - Provide a heavy duty steel base for supporting all major RTU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability.
 - RTUs shall be completely self supporting for installation on roof curb or steel support pedestals.
 - 3. The RTU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor, and roof):
 - 1. General: RTU casing shall be entirely double wall insulated panels, integral of or attached to a structural frame. Construction shall be such that removal of any panel shall not affect the structural integrity of the unit. Casing finished shall meet salt-spray test as specified in paragraph 2.1.C.10. All casing and panel sections shall be tightly butted and gasketed. No gaps of double wall construction will be allowed where panels bolt to air handling unit structural member. Structural members, not covered by the double wall panels, shall have equivalent insulated double wall construction.

- 2. Double wall galvanized steel panels, minimum 51 mm (2 inches) thick, constructed of minimum 1.3 mm (18 gauge) outer skin and 1.0 mm (20 gauge)solid or perforated inner skin to limit wall, roof and floor deflection to not exceed an L/240 ratio when the unit casing is pressurized to (±1245 Pa (±5 in. w.g.). Deflection shall be measured at the midpoint of the panel height. Total housing leakage shall not exceed 1% of rated cfm when the unit casing is pressurized to ±5 in. w.g. (±1245 Pa). The outer (skin) and inner panels shall be solid.
- 3. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 4. Insulation: Insulation shall be injected CFC free polyurethane foam encased in double-wall casing between exterior and interior panels such that no insulation can erode to the air stream. Insulation shall be 50 mm (2 inch) thick, and 48 kg/m³ (3.0 lb/ft³) density with a total thermal resistance (R-value) of approximately 2.3 m.K/W (13.0 hr-ft^{2 o}F/BTU). Units with less than 50 mm (2 inch) of insulation in any part of the walls, floor, roof or drain pan shall not be acceptable. The insulation shall comply with NFPA 90-A for the flame and smoke generation requirements. Also, refer to specification Section 23 07 11, HVAC and BOILER PLANT INSULATION.

Outer Panel	0.8 mm (22 Gage) Minimum
Inner Panel	0.8 mm (22 Gage) Minimum
Insulation	Foam
Thickness	50 mm (2 inch) Minimum
Density	48 kg/m3 (3.0 lb/ft3) Minimum
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)
	Minimum

Table 2.1.C.4

5. The thickness of insulation, mode of application, and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU.

- 6. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inches) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 pound) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inches water gage).
 - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring

and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.

- 9. Roof of the unit shall be sloped to have a minimum pitch of 1/4 inch per foot. The roof shall overhang the side panels by a minimum of three inches to prevent precipitation drainage from streaming down the unit side panels.
- 10. Casing finished shall meet ASTM B117, 500-hour salt spray test, using 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no sign of blistering, wrinkling, or cracking, no loss of adhesion, and the specimen shall show no sign of rust creepage beyond 1/8-inch on either side of scratch mark.
- D. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 pounds per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double wall construction, Type 304 stainless steel and have a minimum of 50 mm (2 inch) insulation, and shall be sloped to drain. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of

casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.

- 1. An intermediate condensate drip pan shall be provided on stacked cooling coils and shall be constructed of type 304 stainless steel with copper downspouts factory piped to main condensate pan. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
- Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
- Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Housed Centrifugal Fan Sections:
 - 1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined or forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B(10) life of not less than 40,000 hours and an L(50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
 - 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement

shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT, on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- H. Plenum Fans Single and/or Multiple Fans in an Array
 - 1. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.
 - Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on

bearing caps of machine in vertical, horizontal and axial directions. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC. The fan wheel shall meet or exceed guidelines in AMCA 801-92 for dynamic balancing requirements. The complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
- 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
- 5. Fan Accessories
 - a. Fan Isolation: Provide an automatic back draft damper to isolate the fan not in operation due to failure.
 - b. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/- 5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- 6. Fan Motor, Drive and Mounting Assembly: Fan Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMNT, on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR

HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS

- I. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 cfm per square foot) at 250 Pa (1 inch water gage) and 2.8 cubic meters/min/square meter (9 cfm per square foot) at 995 Pa (4 inches water gage) Electronic damper operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - J. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the RTU. The RTU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The RTU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for RTU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the RTU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
 - K. Diffuser Section: Furnish a diffuser segment with perforated diffuser plate immediately downstream of supply fan to assure uniform distribution of leaving air across the face of the downstream afterfilters to create uniform velocity profiles across the entire opening. Bolt or weld diffuser plate to a sturdy steel support frame so that it remains rigid. Manufacturer shall include any diffuser section pressure

loss in excess of diffuser plate and this value shall be included in unspecified internal losses when selecting fan.

L. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections.

1. Water Coils, Including Glycol-Water.

- M. Humidifier: When included in design, coordinate the humidification requirements with section 23 84 13 Humidifiers. Provide humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.
- N. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- O. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.
 - 3. Provide a convenience duplex weatherproof receptacle next to the light switch.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof top unit in conformance with ARI 435.
- B. Assemble roof top unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035A. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air-handling units clean prior to operation.
- C. Install seismic restraints for roof top units. Refer to specification Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Leakage and test requirements for roof top units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- E. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Seal and/or fill all openings between the casing and RTU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 81 00 DECENTRALIZED UNITARY HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies split-system air conditioners.
- B. Definitions:
 - Energy Efficiency Ratio (EER): The ratio of net cooling capacity is Btu/h to total rate of electricity input in watts under designated operating conditions (Btu hour/Watt).
 - Seasonal Energy Efficiency Ratio (EER): The ratio of the total cooling output of an air conditioner during its normal annual usage period for cooling in Btu/h divided by total electric energy input in watts during the same period (Btu hour/Watt).
 - 3. Unitary: A Unitary Air Conditioner consists of one or more factorymade assemblies which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well.
 - 4. Where such equipment is provided in more than one assembly the separated assemblies are to be designed to be used together and the requirements of rating are based upon use of matched assemblies.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section 07 72 00, ROOF ACCESSORIES.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT
- G. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- H. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- I. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Section 23 23 00, REFRIGERANT PIPING.
- L. Section 28 31 00, FIRE DETECTION and ALARM.

238100-1

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Safety Standards: ASHRAE Standard 15, Safety Code for Mechanical Refrigeration.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Manufacturer's literature and data:
 - Sufficient information, including capacities, pressure drops, and piping connections clearly presented, shall be included to determine compliance with drawings and specifications for units noted below:
 a. Unitary air conditioners:
 - 1) Split systems
 - Unit Dimensions required clearances, operating weights accessories and start-up instructions.
 - Electrical requirements, wiring diagrams, interlocking and control wiring showing factory installed and portions to be field installed.
 - 4. Mounting and flashing of the roof curb to the roofing structure with coordinating requirements for the roof membrane system.
- C. Certification: Submit proof of specified ARI Certification.
- D. Performance Rating: Submit catalog selection data showing equipment ratings and compliance with required sensible-to-heat-ratio, energy efficiency ratio (EER), and coefficient of performance (COP).
- E. Operating and Maintenance Manual: Submit three copies of Operating and Maintenance manual to Resident Engineer three weeks prior to final inspection.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician, and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 210/240-2017.....Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment 270-2015....Sound Rating of Outdoor Unitary Equipment 310/380-2017....Standard for Packaged Terminal Air-Conditioners and Heat Pumps (CSA-C744-04) 340/360-2019....Performance Rating of Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment 520-2004....Performance Rating of Positive Displacement Condensing Units
- C. Air Movement and Control Association (AMCA): 210-2016.....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating (ANSI) 410-1996.....Recommended Safety Practices for Users and
- Installers of Industrial and Commercial Fans D. American National Standards Institute (ANSI): S12.51-2017.....Acoustics - Determination of Sound Power Levels of Noise Sources Using Sound Pressure -

Precision Method for Reverberation Rooms (same as ISO 3741:1999)

- E. American Society of Civil Engineers (ASCE) ASCE 7-2017.....Minimum Design Loads for Buildings and Other Structures
- F. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Handbook 2020.....HVAC Systems and Equipment

15-2019.....Safety Standard for Refrigeration Systems (ANSI)

62.1-2019......Ventilation for Acceptable Indoor Air Quality (ANSI)

G. American Society of Testing and Materials (ASTM): B117-2018.....Standard Practice for Operating Salt Spray

(Fog) Apparatus

H. Federal Specifications (Fed. Spec.):

A-A-50502-2009..... Air conditioner (Unitary Heat Pump) Air to Air (3000-300,000 Btu)

- I. Military Specifications (Mil. Specs.): MIL-PRF-26915D-....Primer Coating, for Steel Surfaces
- J. National Electrical Manufacturer's Association (NEMA):

ICS 1-2015..... Industrial Controls and Systems: General Requirements

MG 1-2019..... Motors and Generators (ANSI)

K. National Fire Protection Association (NFPA) Publications: 90A-2021.....Standard for the Installation of Air-Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 UNITARY AIR CONDITIONERS - GENERAL

- A. Applicable ARI Standards:
 - 1. Cooling Capacity 39.6 kW (135,000 Btu/h) and More: AHRI 340/ 360.
 - 2. Cooling Capacity Less Than 39.6 kW (135,000 Btu/h): AHRI 210/240. Units shall be listed in the ARI Directory of Certified Unitary Air-Conditioners.
- B. Performance Rating: Cooling capacity of units shall meet the sensible heat and total heat requirements shown in the contract documents. In selecting unit size, make true allowance for "sensible to total heat ratio" to satisfy required sensible cooling capacity.
- C. Machinery Guards: Provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears, and other moving parts regardless of height above the floor. Drive guards may be excluded where motors and drives are inside factory fabricated casings.
- D. Corrosion Prevention: Unless specified otherwise, equipment fabricated from ferrous metals that do not have a zinc coating or a duplex coating of zinc and paint shall be treated for prevention of rust with a factory coating or paint system that will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall be tested for 500 hours. The salt-spray fog test shall be in accordance with ASTM B117 using a 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no signs of blistering, wrinkling, or cracking, no loss of adhesion, and the

specimen shall show no signs of rust beyond 3 mm (1/8-inch) on both sides from the scratch mark. For units located in high humidity areas, provide factory-coated coils for protection from corrosion by using multiple stage electro-deposition coating process.

2.3 SPLIT-SYSTEM AIR CONDITIONERS

- A. Description: Factory assembled and tested, wall-mounted unit, with an air-cooled remote condensing unit, and field-installed refrigeration piping. Unit shall include an electric-resistance heating coil.
- B. Concealed Evaporator Components:
 - 1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 2. Insulation: Factory-applied duct liner.
 - 3. Drain Pans: Galvanized steel, with connection for drain; insulated and complying with ASHRAE 62.1.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 5. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
 - 6. Electric-Resistance Heating Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection. Provide SCR control of electric heating coils as indicated.
 - Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
 - 8. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multi-tapped, multi-speed motors with internal thermal protection and permanent lubrication.
 - 9. Disposable Filters: 25 mm (1 inch) thick, in fiberboard frames with MERV rating of 7 or higher according to ASHRAE 52.2.
 - 10. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- C. Wall-Mounting, Evaporator-Fan Components:

- Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
- 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- 3. Drain Pan and Drain Connection: Comply with ASHRAE 62.1-2007.
- 4. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
- 5. Electric-Resistance Heating Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- 6. Fan: Direct drive, centrifugal fan.
- 7. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multi-tapped, multi-speed motors with internal thermal protection and permanent lubrication.
- 8. Filters: Disposable, with MERV rating of 7 or higher according to ASHRAE 52.2.
- D. Ceiling-Mounting, Evaporator-Fan Components:
 - Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 3. Drain Pan and Drain Connection: Comply with ASHRAE 62.1.
 - 4. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
 - 5. Electric-Resistance Heating Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
 - 6. Fan: Direct drive, centrifugal fan, and integral condensate pump.

238100-6 DECENTRALIZED UNITARY HVAC EQUIPMENT

- 7. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multi-tapped, multi-speed motors with internal thermal protection and permanent lubrication.
- 8. Filters: Disposable, with MERV rating of 7 or higher according to ASHRAE 52.2.
- E. Air-Cooled, Compressor-Condenser Components:
 - Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Service valves, fittings, and gage ports shall be brass and located outside of the casing.
 - Compressor: Hermetically sealed reciprocating or scroll with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - 3. Compressor motor with manual-reset, high-pressure switch and automatic-reset, low-pressure switch.
 - 4. Refrigerant: R-410A unless otherwise indicated.
 - 5. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with liquid subcooler.
 - 6. Fan: Aluminum, propeller type, directly connected to motor.
 - 7. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 8. Low Ambient Kit: Permit operation down to minus 18 deg C (0 deg F).
 - 9. Mounting Base: Polyethylene.
 - 10. Minimum Energy Efficiency: Comply with ASHRAE/IESNA 90.1 "Energy Standard for Buildings except Low-Rise Residential Buildings."

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install roof-mounting compressor-condenser components on equipment supports specified in Section 07 72 00, ROOF ACCESSORIES. Anchor units to supports with removable, cadmium-plated fasteners.
- B. Install seismic restraints.

- C. Install compressor-condenser components on restrained, spring isolators with a minimum static deflection of 25 mm (1 inch) unless otherwise indicated. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Install and connect precharged refrigerant tubing to component's quickconnect fittings. Install tubing to allow access to unit.
- E. Install wall sleeves in finished wall assembly and weatherproof. Install and anchor wall sleeves to withstand, without damage seismic forces as required by code.

3.2 CONNECTIONS

A. Verify condensate drainage requirements.

- B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- C. Install piping adjacent to units to allow service and maintenance.
- D. Install ducts to termination at top of roof curb. Cut roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
- E. Ground equipment and install power wiring, switches, and controls for self-contained and split systems.
- F. Connect refrigerant piping to coils with shutoff valves on the suction and liquid lines at the coil and a union or flange at each connection at the coil and condenser.
- G. Connect piping with shutoff duty valves on the supply and return side of the coil and unions at all connections and with a throttling valve on the return piping near the coil.
- H. Connect piping with shutoff duty valves on the supply and return side of the water-cooled condenser and unions at all connections and with a throttling valve on the return piping near the condenser
- Connect piping with shutoff duty valves and unions on the steam supply and condensate side of the steam coil. On the condensate line near the coil provide a strainer, trap and shutoff valve.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections: After installing units and after electrical circuitry has been energized, test units for compliance with

requirements. Inspect for and remove shipping bolts, blocks, and tiedown straps. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Remove and replace malfunctioning units and retest as specified above.

3.4 STARTUP AND TESTING

- A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- B. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - END - - -

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS
- E. Section 23 09 23, DDC SYSTEMS for HVAC
- F. Section 23 31 00, HVAC DUCTS AND CASINGS
- G. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- H. Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 36 00, AIR TERMINAL UNITS, Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician

and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-2001.....Forced-Circulation Air-Cooling and Air-Heating

Coils

- C. American Society for Testing and Materials (ASTM): B75/75M-2020.....Standard Specifications for Seamless Copper Tube
- D. National Fire Protection Association (NFPA): 70-2020.....National Electric Code
- E. National Electric Manufacturers Association (NEMA): 250-2014.....Enclosures for Electrical Equipment (1,000 Volts Maximum)
- F. Underwriters Laboratories, Inc. (UL):
 1996-2020.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Surgical Suites All Locations: All coils installed in the air handling units serving surgical suites, duct-mounted reheat coils, and air terminal unit-mounted reheat coils shall be equipped with copper fins.
- C. High Humidity Locations: For air-handling unit mounted coils provide the following corrosion treatment:
 - Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to

permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UVresistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.

- 2. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - a. Salt Spray Resistance (Minimum 6,000 Hours)
 - b. Humidity Resistance (Minimum 1,000 Hours)
 - c. Water Immersion (Minimum 260 Hours)
 - d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 - e. Impact Resistance (Up to 160 Inch/Pound)
- D. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- E. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- F. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- G. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- H. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
 - Pressure
 Water Coil
 Steam Coil
 Refrigerant Coil

 Test
 2070 (300)
 1725 (250)
 2070 (300)

 Working
 1380 (200)
 520 (75)
 1725 (250)
- I. Pressures kPa (PSIG):

J. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.

- K. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- L. Cooling Coil Condensate Drain Pan: Section 23 73 00 or Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.
- M. Steam Distributing Coils: Conform to ASTM B75 and ARI 410. Minimum 9.5 mm (3/8-inch) steam distributing tubing installed concentrically in 25 mm (one-inch) OD condensing coil tubes.
- N. Integral Face and Bypass Type Steam Coil:
 - 1. Exempt from ARI Test and Certification.
 - 2. Conform to ASTM B75 and ARI 410.
 - 3. Minimum 16 mm (5/8-inch) steam tube installed in concentrically 25 mm (one-inch) OD diameter tube.
 - Casing: 1.9 mm (14 gage) galvanized steel with corrosion resistant paint.
 - 5. Tubes and Bypasses: Vertical or horizontal.
- O. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; 1.6 mm (16 gage) steel, coated with factory applied corrosion resistant baked enamel finish. Provide damper linkage and electric operators. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.2 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
 - 1. Cooling, all types.
 - 2. Heating or preheat.
 - Runaround energy recovery. ARI certification of capacity adjustment is waived. See Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.
- C. Cleanable Tube Type; manufacturer standard:
 - 1. Well water applications.
 - 2. Waste water applications.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS and as required by Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -
SECTION 26 05 11

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render

26 05 11 - 2

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.

26 05 11 - 3

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 2. When factory tests are successful, contractor shall furnish four (4)

- 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

A. All electrical work shall comply with requirements of the latest NFPA
 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart
 J - General Environmental Controls, OSHA Part 1910 subpart K - Medical

26 05 11 - 4

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition

to other references required by contract.

- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these

approved documents present and available at the time and place of energized electrical work.

- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the NAVAHCS campus electric distribution system shall conform to NAVAHCS's requirements. Coordinate fuses, circuit breakers and relays with the NAVAHCS's system, and obtain NAVAHCS COR and Electric Shop approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.

- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.

- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved

26 05 11 - 9

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 nameplate, wire and cable splicing and terminating material, and

branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed, and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

26 05 11 - 10 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: Medium-voltage cable terminations for use in pad-mounted, liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - A representative sample of Medium-voltage cables from each lot shall be factory tested per NEMA WC 74 to ensure that there are no electrical defects in that specific lot of cable.

1.5 SUBMITTALS

A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:

- 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Installation instructions.
- 2. Samples:
 - a. After approval of submittal and prior to installation, Contractor shall furnish sample in accordance with Section 26 05 11, REOUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 3. Certifications:
 - a. Factory Test Reports: Submit certified factory production test reports for approval.
 - b. Field Test Reports: Submit field test reports for approval.
 - c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
 - d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install cables, splices, and terminations shall have a minimum of five years of experience splicing and terminating cables, including experience with the materials in the approved splices and terminations. Qualified workers who perform cable testing shall have a minimum of five year of experience performing electrical testing of medium-voltage cables, including the ability to understand, interpret test results and develop test report.

b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B3-13.....Standard Specification for Soft or Annealed

Copper Wire

- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 48-09.....Test Procedures and Requirements for Alternating-Current Cable Terminations Used on
 - Shielded Cables Having Laminated Insulation
 - Rated 2.5 kV through 765 kV or Extruded
 - Insulation Rated 2.5 kV through 500 kV
 - 386-06.....Separable Insulated Connector Systems for Power Distribution Systems above 600 V
 - 400-12.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems
 - 400.2-13.....Guide for Field Testing of Shielded Power Cable
 - Systems Using Very Low Frequency (VLF)
 - 404-12.....Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V to 500,000 V

```
Transmission and Distribution of Electric
Energy
```

- E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- F. Underwriters Laboratories (UL):

1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

A. Cable shall be shipped on reels such that it is protected against physical, mechanical and environmental damage. Each end of each length

of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.

B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with ASTM, IEEE, NEC, NEMA and UL, and as shown on the drawings.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
 - 15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.
- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, XLP, XLPE, or TR-XLPE: cross-linked polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically cross-linked.
- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helicallyapplied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

A. Materials shall be compatible with the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.

- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pull boxes, the splices shall be submersible.
- C. Splices:
 - Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - 2. Load-break terminations for indoor and outdoor use: 200 A loadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
 - 3. Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
 - Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arc-proof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.

- E. Splice the cables only in manholes and pull boxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 150 mm (6 inches) above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.

- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be executed by qualified person trained to perform medium-voltage equipment installations. Tools shall be as recommended or provided by the manufacturer. Installation shall comply with manufacturer's instructions.
- C. Splices in manholes shall be located midway between cable racks on walls of manholes, and supported with cable arms at approximately the same elevation as the enclosing duct.
- D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pull boxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pull box, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. General:
 - Perform tests in accordance with the latest IEEE 400 and 400.2, manufacturer's recommendations, and as specified in this specification.
 - Contractor shall make arrangements to have tests witnessed by the COR. Contractor shall proceed with tests only after obtaining approval from the COR.
- B. Visual Inspection: Perform visual inspection prior to electrical tests.
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.
 - Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
 - 4. Verify installation of fireproofing tape and identification tags.
 - 5. At the time of final acceptance, Contractor shall provide the COR visual field inspection notes, findings, and photographs detailing accessible inspection locations.
- C. Electrical Tests New Cables: Perform preparation and tests in order shown below:

- Preparation Prior to Testing: Splices and terminations applied to new cables shall be completed prior to testing. For renovation installation, ends of new cables intended to be spliced to existing service-aged cables shall be prepared (cut back) to allow testing without flashover or tracking. Cables shall not be connected to other equipment while under test.
- Perform Insulation-Resistance Test. Test all cables with respect to ground and adjacent cables. All adjacent cables shall be grounded during testing.
 - a. Apply test voltage for a period sufficient to stabilize output voltage and insulation resistance measurement.
 - b. Test data shall include megohm, applied test voltage, and leakage current readings.
 - c. Further testing shall not continue unless the insulation resistance test results meet or exceed the values listed below. Test voltages and minimum acceptable resistance values shall be: <u>Voltage Class Test Voltage Min. Insulation Resistance</u> 15kV 2,500 VDC 5,000 megohms
- 3. Perform Tan Delta test. Review test readings with the COR prior to proceeding with the Very Low Frequency (VLF) Withstand test
- 4. Perform Very Low Frequency (VLF) Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- D. Electrical Tests Service-Aged Cables: Tests shall be performed for serviced-age cables before inter-connecting to new cables. Perform tests in order shown below:
 - Preparation Prior to Testing: Splices and terminations applied to cables shall be completed prior to testing. Ends of cables intended to be spliced to existing service-aged cables shall be prepared (cut back) to allow testing without flashover or tracking. Cables shall not be connected to other equipment while under test.
 - Perform Insulation-Resistance Test. Test all cables with respect to ground and adjacent cables. All adjacent cables shall be grounded during testing.
 - a. Apply test voltage for a period sufficient to stabilize output voltage and insulation resistance measurement.

- b. Test data shall include megohm, applied test voltage, and leakage current readings.
- c. Further testing shall not continue unless the insulation resistance test results meet or exceed the values listed below. Test voltages and minimum acceptable resistance values shall be: <u>Voltage Class Test Voltage Min. Insulation Resistance</u> 15kV 2,500 VDC 5,000 megohms
- 3. Perform Tan Delta test. Review test readings with the COR prior to proceeding with the VLF Withstand test.
- 4. Perform VLF Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- E. Electrical Tests Inter-connected New Cables and Service-Aged Cables: After successful Tan Delta and VLF Withstand testing of new cables and service-aged cables, perform final splicing inter-connecting between new and service-aged cables. Once new and service-aged cables are completely inter-connected, conduct Tan Delta and VLF Withstand tests for the entire inter-connected cable. Utilize maintenance test voltage for VLF Withstand testing.
- F. Field Test Report: Submit a field test report to the COR that includes the following information:
 - 1. Project Name, Location, Test Date.
 - 2. Name of Technician and Company performing the test.
 - 3. Ambient temperature and humidity at time of test.
 - 4. Name, Model Number and Description of Test Equipment used.
 - 5. Circuit identification, cable length, cable type and size, insulation type, cable manufacturer, service age (if any), voltage rating, description of splices or terminations.
 - 6. Visual field inspection notes, findings, and photographs.
 - 7. Insulation Resistance Test results:
 - a. Test voltage.
 - b. Measurement in Megohms.
 - c. Leakage current.
 - 8. Tan Delta results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).
 - c. Mean Tan Delta at $V_{\rm 0}\text{.}$

- d. Stability measured by Standard Deviation at $V_{\rm 0}.$
- e. Differential Tan Delta.
- f. IEEE Condition Assessment Rating.
- 9. VLF Withstand results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).
 - c. Pass/Fail Rating.
- 10. Conclusions. If any deficiency is discovered based on test results, provide recommendations for corrective action.
- G. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the COR.

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.

26 05 19 - 1

- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10..... Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-14......Thermoset-Insulated Wires and Cables 467-13.....Grounding and Bonding Equipment 486A-486B-13.....Wire Connectors 486C-13.....Splicing Wire Connectors 486D-15.....Sealed Wire Connector Systems 486E-15......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables 514B-12.....Conduit, Tubing, and Cable Fittings $26\ 05\ 19\ -\ 2$ LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 4. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR. 26 05 19 - 3

6. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Underground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation. Listed for wet locations, and approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.

26 05 19 - 4

- The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- F. Underground Splices for No. 8 AWG and Larger:
 - Mechanical type, of high conductivity and corrosion-resistant material. Listed for wet locations, and approved for copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.

26 05 19 - 5

- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pull boxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

- A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.
- B. Fireproofing:

- Install fireproofing on low-voltage conductors where the low-voltage conductors are installed in the same manholes with medium-voltage conductors.
- 2. Use fireproofing tape as specified in Section 26 05 13, MEDIUM-VOLTAGE CABLES, and apply the tape in a single layer, half-lapped, or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (1 inch) into each duct.
- Secure the fireproofing tape in place by a random wrap of glass cloth tape.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pull boxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pull box and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: pad-mounted, liquid-filled, medium-voltage transformers.
- E. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Mediumvoltage circuit breaker switchgear.
- F. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers.
- G. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- H. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
- 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-13..... Standard Specification for Hard-Drawn Copper Wire

B3-13.....for Soft or Annealed Copper Wire

- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-12..... IEEE Guide for Measuring Earth Resistivity,

Ground Impedance, and Earth Surface Potentials

- of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC)

70E-15.....National Electrical Safety Code

99-15.....Health Care Facilities

- E. Underwriters Laboratories, Inc. (UL):
 - 44-14Thermoset-Insulated Wires and Cables
 - 83-14 Thermoplastic-Insulated Wires and Cables
 - 467-13Grounding and Bonding Equipment

26 05 26 - 2

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel

26 05 26 - 3

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

26 05 26 - 4 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- C. Pad-Mounted Transformers:
 - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchboards, Panelboards, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

26 05 26 - 5

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- D. Transformers:
 - Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.
 - Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pull box, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG

26 05 26 - 6 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

bonding jumper at all intermediate metallic enclosures and across all section junctions.

- Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.7 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

> 26 05 26 - 7 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.9 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.10 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.11 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.12 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required

26 05 26 - 8

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

resistance, but the specified number of electrodes must still be provided.

C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- E. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Conduits bracing.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- H. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- I. Section 31 20 11, EARTHWORK (SHORT FORM): Bedding of conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
 - Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12.....North American Specification for the Design of Cold-Formed Steel Structural Members
- C. National Electrical Manufacturers Association (NEMA): C80.1-15.....Electrical Rigid Steel Conduit C80.3-15....Steel Electrical Metal Tubing C80.6-05....Electrical Intermediate Metal Conduit

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13.....Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing) FB2.20-14.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable TC-2-13.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13.....PVC Fittings for Use with Rigid PVC Conduit and Tubing D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-16.....Surface Metal Raceway and Fittings 6-07.....Electrical Rigid Metal Conduit - Steel 50-15.....Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13.....Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings 514C-14......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-14.....Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 19 mm (0.75-inch) unless otherwise shown. Where permitted by the NEC, 19 mm (0.75-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Size: In accordance with the NEC, but not less than 19 mm (0.75inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
 - 3. Rigid aluminum: Shall conform to UL 6A and NEMA C80.5.
 - 4. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
 - 5. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
 - 6. Flexible Metal Conduit: Shall conform to UL 1.
 - 7. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
 - 8. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
 - 9. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run

where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.

- f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4% copper are prohibited.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.

26 05 33 - 5 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

- 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-

down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.

- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- 14. Do not use aluminum conduits in wet locations.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:

a. Where shown on the structural drawings.

- b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, rigid aluminum, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, rigid aluminum, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION

A. Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.

- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely re-coat or re-tape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to

junction boxes with 375 mm (15 inches) of slack flexible conduit.

Flexible conduit shall have a copper bonding jumper installed.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.

L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pull boxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pull boxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 31 20 11, EARTHWORK (SHORT FORM): Trenching, backfill, and compaction.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pull boxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pull boxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.

- c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pull boxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the COR for approval prior to construction.
- Certifications: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-14/318M-14.....Building Code Requirements for Structural Concrete & Commentary
 - SP-66-04.....ACI Detailing Manual
- C. American National Standards Institute (ANSI):
 - 77-14..... Underground Enclosure Integrity
- D. American Society for Testing and Materials (ASTM): C478 REV A-15.....Standard Specification for Precast Reinforced Concrete Manhole Sections

C858-10.....Underground Precast Concrete Utility Structures C990-09....Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants.

E. National Electrical Manufacturers Association (NEMA): TC 2-13.....Electrical Polyvinyl Chloride (PVC) Conduit TC 3-15.....Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 TC 6 & 8-13.....Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations TC 9-04.....Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation F. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

70E-15..... National Electrical Safety Code

G. Underwriters Laboratories, Inc. (UL):

6-07.....Electrical Rigid Metal Conduit-Steel

467-13.....Grounding and Bonding Equipment

651-11.....Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

PART 2 - PRODUCTS

2.1 HARDWARE FOR EXISTING MANHOLES

- A. Cable Supports:
 - 1. Cable stanchions shall be hot-rolled, heavy duty, hot-dipped galvanized "T" section steel, 56 mm (2.25 inches) x 6 mm (0.25 inch) in size, and punched with 14 holes on 38 mm (1.5 inches) centers for attaching cable arms.
 - Cable arms shall be 5 mm (0.1875 inch) gauge, hot-rolled, hot-dipped galvanized sheet steel, pressed to channel shape. Arms shall be approximately 63 mm (2.5 inches) wide x 350 mm (14 inches) long.
 - 3. Insulators for cable supports shall be porcelain, and shall be saddle type or type that completely encircles the cable.
 - 4. Equip each cable stanchion with one spare cable arm, with three spare insulators for future use.

2.2 PULL BOXES

A. General: Size as indicated on the drawings. Provide pull boxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pull box material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pull boxes shall comply with the requirements of ANSI 77 Tier 22 or loading as otherwise noted on the Drawings. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangular-shaped opening.

B. Polymer Concrete Pull boxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pull box shall have open bottom.

2.3 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. UL 651 and 651A Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 90 $^{\circ}$ C (194 $^{\circ}$ F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.
- C. Ducts (direct-burial):
 - 1. Plastic duct:
 - a. Schedule 40 PVC or HDPE conduit.
 - b. Duct shall be suitable for use with 75° C (167° F) rated conductors.
 - Rigid metal conduit: UL 6 and NEMA RN1 galvanized rigid metal, halflap wrapped with 10 mil PVC tape.

2.4 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.5 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.6 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 MANHOLE AND PULL BOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install manholes and pull boxes level and plumb.
 - Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inch)

26 05 41 - 4 UNDERGROUND ELECTRICAL CONSTRUCTION sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.

- B. Access: Ensure the top of frames and covers are flush with finished grade. C. Grounding in Manholes:
- Ground Rods in Manholes: Drive a ground rod into the earth, through the floor sleeve, after the manhole is set in place. Fill the sleeve with sealant to make a watertight seal. Rods shall protrude approximately 100 mm (4 inches) above the manhole floor.

3.2 TRENCHING

- A. Refer to Section 31 20 11 EARTHWORK (SHORT FORM) for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 feet) intervals to establish the grade and route of the duct bank.
 - Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid

metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the COR.

3.3 DUCT INSTALLATION

- A. General Requirements:
 - Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
 - Join and terminate ducts with fittings recommended by the manufacturer.
 - 3. Slope ducts to drain towards manholes and pull boxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inches) in 30 M (100 feet).
 - 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
 - 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
 - 6. Install insulated grounding bushings on the conduit terminations.
 - 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
 - 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
 - 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
 - 10. Clearances between individual ducts:
 - a. For similar services, not less than 75 mm (3 inches).
 - b. For power and signal services, not less than 150 mm (6 inches).

- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required to accomplish NECrequired minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.

- Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
- 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
- Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
- 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pull boxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
- Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved COR.
- C. Direct-Burial Ducts:
 - Install direct-burial ducts only where shown on the drawings. Provide direct-burial ducts only for low-voltage power and lighting branch circuits.
 - 2. Tops of ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - 3. Do not kink the ducts. Compaction shall not deform the ducts.
- D. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the

duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.

- E. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- F. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

A. Duct Testing and Cleaning:

- Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
- 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
- 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the COR.
- 4. Mandrel pulls shall be witnessed by the COR.

---END---

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the individual device up to the utility source and the on-site generator sources.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Mediumvoltage circuit breaker switchgear.
- C. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low-voltage switchgear.
- D. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- E. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide

device settings and ratings, and shall show selective coordination by time-current drawings.

- Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 241-90.....Recommended Practice Electrical Systems in Commercial Buildings 242-03....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems 399-97....Recommended Practice for Industrial and Commercial Power Systems Analysis 1584-02....Performing Arc-Flash Hazards Calculations 1584A-04....Performing Arc-Flash Hazards Calculations -Amendment 1

1584B-11.....Performing Arc-Flash Hazards Calculations -Amendment 2

C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-18....Standard for Electrical Safety in the Workplace 99-18....Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one-line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.

26 05 73 - 2

OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

- C. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- D. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- E. Coordination Study:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific

26 05 73 - 3 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.

- 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
 - 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

- A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---
Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent. B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

----- END -----

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Interface of lighting controls with HVAC control systems.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- G. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.

- e. Installation details.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA):

C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing

- ICS-1-15.....Standard for Industrial Control and Systems General Requirements
- ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment
- ICS-6-16.....Standard for Industrial Controls and Systems Enclosures
- C. National Fire Protection Association (NFPA):

70-17..... National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL): 20-10.....Standard for General-Use Snap Switches Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

98-16	Enclosed and Dead-Front Switches
773A-16	Nonindustrial Photoelectric Switches for
	Lighting Control
916-15	Standard for Energy Management Equipment
	Systems
924-16	Emergency Lighting and Power Equipment (for use
	when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 CEILING-MOUNTED PHOTOELECTRIC SWITCHES

- A. Solid-state, light-level sensor unit, with separate relay unit.
 - 1. Sensor Output: Contacts rated to operate the associated relay. Sensor shall be powered from the relay unit.
 - 2. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 3. Monitoring Range: 108 to 2152 lx (10 to 200 fc), with an adjustment for turn-on and turn-off levels.
 - 4. Time Delay: Adjustable from 5 to 300 seconds, with dead-band adjustment.
 - 5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

2.2 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.3 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.4 LIGHTING CONTROL SYSTEM - DIGITAL ADDRESSABLE LIGHTING INTERFACE (DALI)

- A. System Description:
 - 1. The lighting control system shall consist of digital lighting control network connecting DALI compliant digital addressable ballasts, control modules and lighting control devices directly with a system server / central control station. Individually addressable electronic ballasts, control modules, and control devices are operated from signals received through DALI-compliant bus from variety of DALI compliant digital controllers and interfaces and programmed through the system server / central control station. System includes all associated network bus and wiring, DALI controllers and interfaces, panels, photocells, switches, dimmers, time clock, and occupancy sensors. System shall utilize DALI compliant ballast and dimming modules provided with light fixtures.
 - System shall include server / central station with DALI operating software, data network, and BACnet IP communication with other systems as described. System communication protocol shall be compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - 3. System server / central station shall provide programmable operation of lights connected via system bus and controlled with system devices. System software shall provide control of DALI ballast, control modules and control devices, time and sequence scheduling, timed out and blink light operation and monitoring and reporting of system events and components. Initial programming shall be as shown on plans and schedules.
- B. Server / Central Control Station: Lighting control system manufacturer shall be responsible to assure coordination between relay modules, network hubs and control system server/ central station such that system performs as described. Server / central control station shall have a minimum 80 GB hard drive, 8 GB RAM, 3 GHz speed minimum, three Ethernet ports, 1024 x 768 resolution graphic card, and 3 USB 2.0 ports. Server shall be provided with monitor, keyboard and mouse, and plugged into a receptacle connected to an equipment emergency circuit as a minimum.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

C. Control Devices: All occupancy sensors (Ultrasonic, IR and Dual Technology type), photocells, switches and timers shall be provided with system and be DALI compliant. Devices shall be designed to operate on system network. Supplemental DALI compliant signal repeaters and controllers shall be provided as required. This equipment shall be identified in shop drawing submission.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration as noted on the Drawings.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.
- E. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory-authorized technician who will verify all adjustments and sensor placements.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

3.4 INSTRUCTION

- A. Furnish the services of a factory-trained technician for one 8-hour training period for instructing personnel in the maintenance and operation of the lighting control system on the dates requested by the COR.
- B. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

- - - E N D - - -

SECTION 26 12 19

PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the pad-mounted, liquid-filled, medium-voltage transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for electrical equipment.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- E. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground currents.
- G. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pullboxes, and ducts for underground raceway systems.
- H. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:

26 12 19 - 1

- Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per IEEE Standards. Factory tests shall be certified. The following tests shall be performed:
 - a. Perform insulation-resistance tests, winding-to-winding and each winding-to-ground.
 - b. Perform turns-ratio tests at all tap positions.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
 - c. Complete nameplate data, including manufacturer's name and catalog number.
 - 2. Manuals:
 - a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
 - Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
 - Approvals will be based on complete submissions of manuals, together with shop drawings.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

26 12 19 - 2

- 1) Update the manual to include any information necessitated by shop drawing approval.
- 2) Show all terminal identification.
- Include information for testing, repair, troubleshooting, assembly, disassembly, and recommended maintenance intervals.
- Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- B. Certifications:
 - Two weeks prior to the final inspection, submit the following certifications.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): D3487-16.....Standard Specification for Mineral Insulating

Oil Used in Electrical Apparatus

- C. Institute of Electrical and Electronic Engineers (IEEE): 48-09.....Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5kV Through 765kV or Extruded Insulation Rated 2.5kV Through 500kV
 - 386-16..... Separable Insulated Connector Systems for Power Distribution Systems Above 600 V
 - 592-07.....Exposed Semiconducting Shields on High-Voltage Cable Joints and Separable Connectors
 - C2-17.....National Electrical Safety Code

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 C37.47-11.....Specification for High Voltage (>1000V) Distribution Class Current-Limiting Fuses and Fuse Disconnecting Switches C57.12.00-15.....Liquid-Immersed Distribution, Power and Regulating Transformers C57.12.10-13.....Liquid-Immersed Power Transformers C57.12.28-14.....Pad-Mounted Equipment - Enclosure Integrity C57.12.34-15.....Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers, 5 MVA and Smaller; High Voltage, 34.5 kV Nominal System Voltage and Below; Low Voltage, 15kV Nominal System Voltage and Below C57.12.90-15.....Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers C62.11-12..... Metal-Oxide Surge Arresters for AC Power Circuits D. International Code Council (ICC): IBC-15.....International Building Code E. National Electrical Manufacturers Association (NEMA): TR 1-13..... Transformers, Regulators, and Reactors F. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) G. Underwriters Laboratories Inc. (UL): 467-13..... Grounding and Bonding Equipment H. United States Department of Energy (DOE): 10 CFR Part 431.....Energy Efficiency Program for Certain Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Transformers shall be in accordance with ASTM, IEEE, NFPA, UL, as shown on the drawings, and as specified herein. Each transformer shall be assembled as an integral unit by a single manufacturer.
- B. Transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and with liquid-immersed windings.
- C. Ratings shall not be less than shown on the drawings.

26 12 19 - 4

- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the project site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat, except where a different color is specified in Section 09 06 00, SCHEDULE FOR FINISHES. All surfaces of the transformer that will be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.

2.2 COMPARTMENTS

- A. Construction:
 - 1. Enclosures shall be weatherproof and in accordance with IEEE C57.12.28.
 - The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.
 - 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing and with reinforcing gussets using jig welds to assure rectangular rigidity.
 - 4. All bolts, nuts, and washers shall be zinc-plated steel.
 - 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
 - 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration, impedance, date of manufacture, and serial number shall be shown on the nameplate.
- B. Doors:
 - Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
 - 2. The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.

2.3 BIL RATING

A. 15 kV class equipment shall have a minimum 95 kV BIL rating.

26 12 19 - 5

2.4 TRANSFORMER FUSE ASSEMBLY

A. The primary fuse assembly shall be a combination of externally replaceable Bay-O-Net liquid-immersed fuses in series with liquid-immersed current-limiting fuses.

2.5 PRIMARY CONNECTIONS

- A. Primary connections shall be 200 A dead-front load-break wells and inserts for cable sizes shown on the drawings.
- B. Surge Arresters: Distribution class, one for each primary phase, complying with IEEE C62.11, supported from tank wall.

2.6 MEDIUM-VOLTAGE SWITCH

- A. The transformer primary disconnect switch shall be an oil-immersed, internal, gang-operated, load-interrupter type, rated at ampacity and system voltage as shown on the drawings, with a minimum momentary withstand rating of not less than the calculated available fault current shown on the drawings.
- B. For loop feeds, switch shall be a four-position, T-blade manual switch located in the medium-voltage compartment and hot-stick-operated.

2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium-voltage cables in the primary compartment with 200 A load-break pre-molded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a semi-conductive shield material covering the housing. The separable connector system shall include the load-break elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
 - B. Ground metallic cable shield with a cable shield grounding adapter, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly, bleeder wire, and ground braid.

2.8 LOW-VOLTAGE EQUIPMENT

- A. Mount the low-voltage bushings, and hot stick in the low-voltage compartment.
- B. The low-voltage leads shall be brought out of the tank by epoxy pressure tight bushings, and shall be standard arrangement.

26 12 19 - 6

C. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the secondary neutral and ground pad.

2.9 TRANSFORMERS

- A. Transformer ratings shall be as shown on drawings. kVA ratings shown on the drawings are for continuous duty without the use of cooling fans.
- B. Temperature rises shall not exceed the NEMA TR 1 of 65 $^\circ$ C (149 $^\circ$ F) by resistance.
- C. Transformer insulating material shall be mineral oil in accordance with ASTM D 3487.
- D. Transformer impedance shall be not less than 4-1/2% for sizes 150 kVA and larger. Impedance shall be as shown on the drawings.
- E. Sound levels shall conform to NEMA TR 1 standards.
- F. Primary and Secondary Windings for Three-Phase Transformers:
 - 1. Primary windings shall be delta-connected.
 - Secondary windings shall be wye-connected, except where otherwise indicated on the drawings. Provide isolated neutral bushings for secondary wye-connected transformers.
 - 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- G. Primary windings shall have four 2-1/2% full-capacity voltage taps; two taps above and two taps below rated voltage.
- H. Core and Coil Assemblies:
 - Cores shall be grain-oriented, non-aging, silicon steel to minimize losses.
 - Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
 - 3. Coils shall be continuous-winding type without splices except for taps. Material shall be copper.
 - 4. Coil and core losses shall be optimum for efficient operation.
 - 5. Primary, secondary, and tap connections shall be brazed or pressure type.
 - 6. Provide end fillers or tie-downs for coil windings.
- I. The transformer tank, cover, and radiator gauge thickness shall not be less than that required by ANSI.

26 12 19 - 7

- J. Accessories:
 - 1. Provide standard NEMA features, accessories, and the following:
 - a. No-load tap changer. Provide warning sign.
 - b. Lifting, pulling, and jacking facilities.
 - c. Globe-type valve for oil filtering and draining, including sampling device.
 - d. Pressure relief valve.
 - e. Liquid level gauge and filling plug.
 - f. A grounding pad in the medium- and low-voltage compartments.
 - g. A diagrammatic nameplate.
 - h. Dial-type liquid thermometer with a maximum reading pointer and an external reset.
 - i. Hot stick. Securely fasten hot stick within low-voltage compartment.
 - 2. The accessories shall be made accessible within the compartments without disassembling trims and covers.
- K. Transformers shall meet the energy conservation standards for transformers per the United States Department of Energy 10 CFR Part 431.

2.10 CABLE FAULT INDICATORS (LOOP SYSTEM ONLY):

- A. Provide each incoming and outgoing cable within the medium-voltage compartment with a single-phase cable fault indicator with in-rush restraint. Mount the indicator on the cable support member.
 - The sensor assembly shall have a split-core for easy installation over the incoming and outgoing cable. The core shall be laminated, grain-oriented silicon steel, and encapsulated. Provide a clamp to secure the two coil halves around the cable.
 - Select the coil to the pick-up at the current setting shown on the drawings.
 - a. The coil setting shall be accurate to within 10% of the pick-up.
 - b. The coil current-time curve shall coordinate with the primary current-limiting fuse.
- B. Upon restoration of the system to normal operating conditions, the cable fault indicator shall automatically reset to normal and be ready to operate.

26 12 19 - 8

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install transformers outdoors, as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.
- B. Anchor transformers with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. In seismic areas, transformers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Mount transformers on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 12-1/2 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- E. Grounding:
 - Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.
 - Connect the ground rod to the ground pads in the medium- and lowvoltage compartments.
 - 3. Install and connect the cable shield grounding adapter per the manufacturer's instructions. Connect the bleeder wire of the cable shield grounding adapter to the load-break elbow grounding point with minimum No. 14 AWG wire, and connect the ground braid to the grounding system with minimum No. 6 AWG bare copper wire. Use soldered or mechanical grounding connectors listed for this purpose.

26 12 19 - 9

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.
 - c. Verify that control and alarm settings on temperature indicators are as specified.
 - d. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections, and perform thermographic survey after energization under load.
 - e. Vacuum-clean transformer interior. Clean transformer enclosure exterior.
 - f. Verify correct liquid level in transformer tank.
 - g. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - h. Verify the presence and connection of transformer surge arresters, if provided.
 - i. Verify that the tap-changer is set at rated system voltage.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 SPARE PARTS

- A. Deliver the following spare parts for the project to the COR two weeks prior to final inspection:
 - 1. Six insulated protective caps.
 - One spare set of medium-voltage fuses for each size and type of fuse used in the project.
 - 3. One spare set of three cable fault indicators.

3.5 INSTRUCTION

A. The Contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the COR.

---END---

SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of low-voltage dry-type general-purpose transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of nonstructural components.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, temperature rise, wiring and connection diagrams, plan, front, side, and rear elevations, accessories, and device nameplate data.

26 22 00 - 1 LOW-VOLTAGE TRANSFORMERS

- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets and wiring diagrams.
 - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the transformers.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Fire Protection Association (NFPA): 70-17......National Electrical Code (NEC)
- D. National Electrical Manufacturers Association (NEMA): TR 1-13.....Transformers, Step Voltage Regulators and

Reactors

ST 20-14.....Dry Type Transformers for General Applications

E. Underwriters Laboratories, Inc. (UL):

UL 506-17.....Standard for Specialty Transformers

UL 1561-11.....Dry-Type General Purpose and Power Transformers

F. United States Department of Energy:

26 22 00 - 2

LOW-VOLTAGE TRANSFORMERS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

10 CFR Part 431.....Energy Efficiency Program for Certain Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 TRANSFORMERS

- A. Unless otherwise specified, transformers shall be in accordance with NEMA, NFPA, UL and as shown on the drawings.
- B. Transformers shall have the following features:
 - Self-cooled by natural convection, isolating windings, indoor drytype. Autotransformers will not be accepted, except as specifically allowed for buck-boost applications.
 - 2. Rating and winding connections shall be as shown on the drawings.
 - 3. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
 - 4. Copper windings.
 - 5. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220 °C (428 °F) system with an average maximum rise by resistance of 150 °C (302 °F) in a maximum ambient of 40 °C (104 °F).
 - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 °C (365 °F) system with an average maximum rise by resistance of 115 °C (239 °F) in a maximum ambient of 40 °C (104 °F).
 - 6. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.
 - b. Cores shall be grain-oriented, non-aging, and silicon steel.
 - c. Coils shall be continuous windings without splices except for taps.
 - d. Coil loss and core loss shall be minimized for efficient operation.
 - e. Primary and secondary tap connections shall be brazed or pressure type.
 - f. Coil windings shall have end filters or tie-downs for maximum strength.
 - 7. Average audible sound levels shall comply with NEMA.

- If not shown on drawings, nominal impedance shall be as permitted by NEMA.
- 9. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.
- 10. Enclosures:
 - a. Comprised of not less than code gauge steel.
 - b. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service.
 - c. Ventilation openings shall prevent accidental access to live components.
 - d. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.
- 11. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated.
- 12. Dimensions and configurations shall conform to the spaces designated for their installations.
- 13. Transformers shall meet the energy conservation standards for transformers per the United States Department of Energy's 10 CFR Part 431.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.
- B. Anchor transformers with rustproof bolts, nuts, and washers, in accordance with manufacturer's instructions, and as shown on drawings.
- C. In seismic areas, transformers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 150 mm (6 inches).
- E. Install transformers on vibration pads designed to suppress transformer noise and vibrations.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
 - d. Perform specific inspections and mechanical tests as recommended by manufacturer.
 - e. Verify correct equipment grounding.
 - f. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition, and properly performing the intended function. ---END---

SECTION 26 24 13 DISTRIBUTION SWITCHBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the low-voltage circuit-breaker distribution switchboards, indicated as switchboard(s) in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- G. Section 26 25 11, BUSWAYS: Feeder busway and fittings.
- H. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices for switchboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - 1. Tests shall be conducted per NEMA PB 2.
 - Verify that circuit breaker sizes and types correspond to drawings, and the Overcurrent Protective Device Coordination Study.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-22

- Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
- 4. Exercise all active components.
- 5. Perform an insulation-resistance test, phase to ground, on each bus section, with phases not under test grounded, in accordance with manufacturer's published data.
- 6. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 V DC for 300-volt rated cable and 1000 V DC for 600-volt rated cable, or as required if solid-state components or control devices cannot tolerate the applied voltage.
- 7. If applicable, verify correct function of control transfer relays located in the switchboard with multiple control power sources.
- Perform phasing checks on double-ended or dual-source switchboards to insure correct bus phasing from each source.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Switchboard shop drawings shall be submitted simultaneously with or after the Overcurrent Protective Device Coordination Study.
 - b. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - c. Prior to fabrication of switchboards, submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Circuit breaker sizes.
 - 3) Interrupting ratings.
 - 4) Safety features.
 - 5) Accessories and nameplate data.
 - 6) Switchboard one line diagram, showing ampere rating, number of bars per phase and neutral in each bus run (horizontal and vertical), bus spacing, equipment ground bus, and bus material.
 - 7) Elementary and interconnection wiring diagrams.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-22

- 8) Technical data for each component.
- 9) Dimensioned exterior views of the switchboard.
- 10) Dimensioned section views of the switchboard.
- 11) Floor plan of the switchboard.
- 12) Foundation plan for the switchboard.
- Provisions and required locations for external conduit and wiring entrances.
- 14) Approximate design weights.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the switchboard.
 - Include information for testing, repair, trouble shooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - 3) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the switchboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the switchboards have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE):

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-22 C37.13-15..... Low Voltage AC Power Circuit Breakers Used in Enclosures C57.13-16.....Instrument Transformers C62.41.1-08.....Surge Environment in Low-voltage (1000V and less) AC Power Circuits C62.45-08.....Surge Testing for Equipment connected to Low-Voltage AC Power Circuits C. International Code Council (ICC): IBC-21.....International Building Code D. National Electrical Manufacturer's Association (NEMA): PB 2-11.....Deadfront Distribution Switchboards PB 2.1-13..... Proper Handling, Installation, Operation, and Maintenance of Deadfront Distribution Switchboards Rated 600 Volts or Less E. National Fire Protection Association (NFPA): 70-23.....National Electrical Code (NEC) F. Underwriters Laboratories, Inc. (UL): 67-18.....Panelboards 489-16..... Molded-Case Circuit Breakers, Molded-Case Switches, and Circuit-Breaker Enclosures 891-19.....Switchboards

PART 2 - PRODUCTS

2.1 GENERAL

- A. Shall be in accordance with IEEE, NEMA, NFPA, UL, as shown on the drawings, and have the following features:
 - Switchboard shall be a complete, grounded, continuous-duty, integral assembly, dead-front, dead-rear, self-supporting, indoor type switchboard assembly. Incorporate devices shown on the drawings and all related components required to fulfill operational and functional requirements.
 - 2. Ratings shall not be less than shown on the drawings. Short circuit ratings shall not be less than the available fault current shown in the Overcurrent Protective Device Coordination Study.
 - Switchboard shall conform to the arrangements and details shown on the drawings.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-22 4. Switchboards shall be assembled, connected, and wired at the factory

- so that only external circuit connections are required at the construction site. Split the structure only as required for shipping and installation. Packaging shall provide adequate protection against rough handling during shipment.
- All non-current-carrying parts shall be grounded per Section 26 05
 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS for additional requirements.
- 6. Series rated switchboards are not allowed.

2.2 BASIC ARRANGEMENT

- A. Type 1: Switchboard shall be front accessible with the following features:
 - 1. Device mounting:
 - a. Main breaker: Individually mounted and compartmented or group mounted with feeder breakers.
 - b. Feeder breakers: Group mounted.
 - 2. Section alignment: As shown on the drawings.
 - 3. Accessibility:
 - a. Main section line and load terminals: Front and side.
 - b. Distribution section line and load terminals: Front.
 - c. Through bus connections: Front and end.
 - 4. Bolted line and load connections.
 - 5. Full height wiring gutter covers for access to wiring terminals.

2.3 HOUSING

- A. Shall have the following features:
 - 1. Frames and enclosures:
 - a. The assembly shall be braced with reinforcing gussets using bolted connections to assure rectangular rigidity.
 - b. The enclosure shall be steel, leveled, and not less than the gauge required by applicable publications.
 - c. Die-pierce the holes for connecting adjacent structures to insure proper alignment, and to allow for future additions.
 - d. All bolts, nuts, and washers shall be zinc-plated steel.
- B. Finish:
 - All metal surfaces shall be thoroughly cleaned, phosphatized and factory primed prior to applying baked enamel or lacquer finish.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-22

2. Provide a light gray finish for indoor switchboard.

2.4 BUSES

- A. Bus Bars and Interconnections:
 - Provide copper phase and neutral buses, fully rated for the amperage as shown on the drawings for the entire length of the switchboard. Bus laminations shall have a minimum of 6 mm (1/4 inch) spacing.
 - 2. Mount the buses on appropriately spaced insulators and brace to withstand the available short circuit currents.
 - 3. The bus and bus compartment shall be designed so that the acceptable NEMA standard temperature rises are not exceeded.
 - 4. Install a copper ground bus the full length of the switchboard assembly.
 - 5. Main Bonding Jumper: An un-insulated copper bus, size as shown on drawings, shall interconnect the neutral and ground buses, when the switchboard is used to establish the system common ground point.
 - 6. All bolts, nuts, and washers shall be zinc-plated steel. Bolts shall be torqued to the values recommended by the manufacturer.
 - Make provisions for future bus extensions by means of bolt holes or other approved method.

2.5 MAIN CIRCUIT BREAKERS

- A. Type I or Type II Switchboards: Provide molded case main circuit breakers as shown on the drawings. Circuit breakers shall be the solid state adjustable trip type.
 - Trip units shall have field adjustable tripping characteristics as follows:
 - a. Long time pickup.
 - b. Long time delay.
 - c. Short time pickup.
 - d. Short time delay.
 - e. Instantaneous.
 - f. Ground fault delay.
 - 2. Breakers with same frame size shall be interchangeable with each other.
 - 3. Breakers shall be fully rated.
2.6 FEEDER CIRCUIT BREAKERS

- A. Provide molded case circuit breakers as shown on the drawings.
- B. Adjustable Trip Molded Case Circuit Breakers:
 - Provide molded case, solid state adjustable trip type circuit breakers.
 - Trip units shall have field adjustable tripping characteristics as follows:
 - a. Long time pickup.
 - b. Long time delay.
 - c. Short time pickup.
 - d. Short time delay.
 - e. Instantaneous.
 - f. Ground fault delay.
 - 3. Breakers with same frame size shall be interchangeable with each

2.8 SURGE PROTECTIVE DEVICES

A. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

2.9 METERING

- A. Refer to Section 25 10 10, ADVANCED UTILITY METERING. Refer to drawings for meter locations.
- B. Provide current transformers for each meter. Current transformers shall be wired to shorting-type terminal blocks.
- C. Provide voltage transformers including primary fuses and secondary protective devices for metering as shown on the drawings.

2.10 OTHER EQUIPMENT

A. Furnish tools and accessories required for circuit breaker and switchboard test, inspection, maintenance, and proper operation.

2.11 CONTROL WIRING

A. Switchboard control wires shall not be less than No. 14 AWG copper 600 volt rated. Install wiring complete at the factory, adequately bundled and protected. Provide separate control circuit fuses in each breaker compartment and locate for ease of access and maintenance.

2.12 NAMEPLATES AND MIMIC BUS

A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. For Essential Electrical System, provide laminated red phenolic resin with white core with 12 mm Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-22 (1/2 inch) engraved lettered nameplates next to each circuit breaker.

Nameplates shall indicate equipment served, spaces, or spares in accordance with one line diagram shown on drawings. Nameplates shall be mounted with plated screws on front of breakers or on equipment enclosure next to breakers. Mounting nameplates only with adhesive is not acceptable.

B. Mimic Bus: Provide an approved mimic bus on front of each switchboard assembly. Color shall be black for the Normal Power system and red for the Essential Electrical System, either factory-painted plastic or metal strips. Plastic tape shall not be used. Use symbols similar to one line diagram shown on drawings. Plastic or metal strips shall be mounted with plated screws.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install switchboards in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Anchor switchboards with rustproof bolts, nuts, and washers not less than 13 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- E. Interior Location. Mount switchboard on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 11-01-22

- b. Inspect physical, electrical, and mechanical condition.
- c. Verify appropriate anchorage, required area clearances, and correct alignment.
- d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- e. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
- g. Vacuum-clean switchboard enclosure interior. Clean switchboard enclosure exterior.
- Inspect insulators for evidence of physical damage or contaminated surfaces.
- i. Verify correct shutter installation and operation.
- j. Exercise all active components.
- k. Verify the correct operation of all sensing devices, alarms, and indicating devices.
- 1. Verify that vents are clear.
- 2. Electrical tests:
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.
 - c. Perform phasing check on double-ended switchboards to ensure correct bus phasing from each source.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the switchboard is in good operating condition and properly performing the intended function.

3.4 WARNING SIGN

A. Mount on each entrance door of the switchboard room, approximately 1500 mm (5 feet) above grade or floor, a clearly lettered warning sign for warning personnel. The sign shall be attached with rustproof metal screws.

3.5 ONE LINE DIAGRAM AND SEQUENCE OF OPERATION

A. At final inspection, an as-built one line diagram shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchboard room or in the outdoor switchboard enclosure.

26 24 13 - 9

C. Deliver an additional four copies of the as-built one line diagram to the COR.

3.6 AS-LEFT TRIP UNIT SETTINGS

- A. The trip unit settings shall be set in the field by an authorized representative of the switchboard manufacturer per the approved Electrical System Protective Device Study in accordance with Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY.
- C. Post a durable copy of the "as-left" trip unit settings in a convenient location in the switchboard room. Deliver four additional copies of the settings to the COR. Furnish this information prior to the activation of the switchboard.

3.7 INSTRUCTION

A. Furnish the services of a factory-trained technician for one, 4-hour training period for instructing personnel in the maintenance and operation of the switchboards, on the dates requested by the COR.

---END---

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- H. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.
- I. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

IBC-15..... International Building Code

C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-14....Enclosures for Electrical Equipment (1,000V

Maximum)

D. National Fire Protection Association (NFPA):

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 70-17.....National Electrical Code (NEC) 70E-18.....Standard for Electrical Safety in the Workplace E. Underwriters Laboratories, Inc. (UL): 50-15.....Enclosures for Electrical Equipment 67-09....Panelboards

489-16.....Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with sub-feed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second

26 24 16 - 3 PANELBOARDS section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.

K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for pre-punched knockouts on top and bottom end walls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
 - 4. Inner and outer doors shall open left to right.
 - 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A

frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY .

- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
 - 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.

- C. In seismic areas, panelboards shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- F. Provide blank cover for each unused circuit breaker mounting space.
- G. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of enclosures with rust-preventive paint before the new interior components are installed. Provide new trim. Trim shall fit tight to the enclosure.
- H. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

> 26 24 16 - 6 PANELBOARDS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including

technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015).....General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-16.....Surface Metal Raceways and Fittings
 20-10.....General-Use Snap Switches
 231-16....Power Outlets
 467-13....Grounding and Bonding Equipment
 498-17....Attachment Plugs and Receptacles
 943-16...Ground-Fault Circuit-Interrupters
 1449-14...Surge Protective Devices
 1472-15...Solid State Dimming Controls
- PART 2 PRODUCTS

2.1 RECEPTACLES

A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.

- Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.

- 5. MRI Duplex Receptacles: Shall be extra heavy-duty, hospital-grade, suitable for mounting in a standard non-ferrous outlet box, and constructed without ferrous metal. Suitable for installation in MRI Suites.
- C. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a weather-resistant, GFCI, duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self-grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type smooth nylon. Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
- C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise, shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint for nonstructural components.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - Elementary schematic diagrams shall be provided for clarity of operation.
 - Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-14.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 C37.90.1-12..... Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C. International Code Council (ICC): IBC-15..... International Building Code D. National Electrical Manufacturers Association (NEMA): ICS 1-00(R2015).....Industrial Control and Systems: General Requirements ICS 1.1-84(R2015).....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2-00(R2005).....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-15.....Industrial Control and Systems: Terminal Blocks ICS 6-93(R2016).....Industrial Control and Systems: Enclosures ICS 7-14.....Industrial Control and Systems: Adjustable-Speed Drives ICS 7.1-14.....Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) F. Underwriters Laboratories Inc. (UL): 508A-13.....Industrial Control Panels 508C-16..... Power Conversion Equipment

1449-14.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with fused switch disconnecting means, with

external operating handle with lock-open padlocking positions and ON-OFF position indicator.

- 1. Fused Switches:
 - a. Quick-make, quick-break type.
 - b. Minimum duty rating shall be NEMA classification General Duty (GD) for 240 Volts and NEMA classification Heavy Duty (HD) for 480 Volts.
 - c. Horsepower rated, and shall have the following features:
 - 1) Copper blades, visible in the OFF position.
 - 2) An arc chute for each pole.
 - Fuse holders for the sizes and types of fuses specified or as shown on the drawings.
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Thermal Temperature Probe Thermal Relay type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.

- Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
- 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - Units shall include thermal overload relays, on-off operator, red pilot light, normally open auxiliary contacts.
- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.

2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.

- H. Operating and Design Conditions:
 - 1. Elevation: 5,500 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +125°F Minimum -10°F
 - 3. Relative Humidity: 95%
 - 4. VSMC Locations: Air-conditioned space and rooftop
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
 - 8. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down

for manual reset or fault correction, with adjustable delay time between restart attempts.

- 9. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- 10. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-TEST, which allows testing and adjusting of the VSMC.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.

- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Refer to Mechanical Drawings for additional information.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. In seismic areas, motor controllers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Install manual motor controllers in flush enclosures in finished areas.
- D. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- E. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- F. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COR before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:

- 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COR.

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit

breakers, wiring and connection diagrams, accessories, and device nameplate data.

- 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU 1-12.....Low Voltage Cartridge Fuses KS 1-13....Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

98-16.....Enclosed and Dead-Front Switches
248 1-11....Low Voltage Fuses
489-13....Molded Case Circuit Breakers and Circuit
Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.
 - Electrically operated switches shall only be installed where shown on the drawings.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.4 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- D. Motor Branch Circuits: Class RK5, time delay.
- E. Other Branch Circuits: Class RK5, time delay.
- F. Control Circuits: Class CC, fast acting.

2.5 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. In seismic areas, enclosed switches and circuit breakers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---

SECTION 26 32 13 ENGINE GENERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the low-voltage engine generators.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Requirements for pipe and equipment support and noise control.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Requirements for hot piping and equipment insulation.
- H. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Requirements for secondary distribution switchboards.
- I. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Requirements for automatic transfer switches for use with engine generators.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification.

1.4 FACTORY TESTS

A. Factory Tests shall be required.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18

- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - Load Test: Shall include two hours while the engine generator is delivering 100% of the specified kW, and four hours while the engine generator is delivering 80% of the specified kW. During this test, record the following data at 20-minute intervals:

Time	Engine RPM	Oil Temperature Out
kW	Water Temperature In	Fuel Pressure
Voltage	Water Temperature Out	Oil Pressure
Amperes	Oil Temperature In	Ambient Temperature

- Cold Start Test: Record time required for the engine generator to develop specified voltage, frequency, and kW load from a standstill condition with engine at ambient temperature.
- The manufacturer shall furnish fuel, load banks, testing instruments, and all other equipment necessary to perform these tests.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Scaled drawings, showing plan views, side views, elevations, and cross-sections.
 - 2. Diagrams:
 - a. Control system diagrams, control sequence diagrams or tables, wiring diagrams, interconnections diagrams (between engine generators, automatic transfer switches, paralleling switchgear, local control cubicles, remote annunciator panels, and fuel storage tanks, as applicable), and other like items.
 - 3. Technical Data:
 - a. Published ratings, catalog cuts, pictures, and manufacturer's specifications for engine generator, governor, voltage regulator, radiator, muffler, dampers, day tank, pumps, fuel tank, batteries
and charger, jacket heaters, torsional vibration, and control and supervisory equipment.

- b. Description of operation.
- c. Short-circuit current capacity and sub-transient reactance.
- d. Sound power level data.
- 4. Calculations:
 - a. Calculated performance derations appropriate to installed environment.
- 5. Manuals:
 - a. When submitting the shop drawings, submit complete maintenance and operating manuals, to include the following:
 - 1) Technical data sheets.
 - 2) Wiring diagrams.
 - Include information for testing, repair, troubleshooting, and factory recommended periodic maintenance procedures and frequency.
 - 4) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 6. Test Reports:
 - a. Submit certified factory test reports for approval.
 - b. Submit field test reports two weeks prior to the final inspection.
- 7. Certifications:
 - a. Prior to fabrication of the engine generator, submit the following for approval:
 - 1) A certification in writing that an engine generator of the same model and configuration, with the same bore, stroke, number of cylinders, and equal or higher kW/kVA ratings as the proposed engine generator, has been operating satisfactorily with connected loads of not less than 75% of the specified kW/kVA rating, for not fewer than 2,000 hours without any failure of a crankshaft, camshaft, piston, valve, injector, or governor system.

- 2) A certification in writing that devices and circuits will be incorporated to protect the voltage regulator and other components of the engine generator during operation at speeds other than the rated RPM while performing maintenance. Submit thorough descriptions of any precautions necessary to protect the voltage regulator and other components of the system during operation of the engine generator at speeds other than the rated RPM.
- 3) A certification from the engine manufacturer stating that the engine exhaust emissions meet the applicable federal, state, and local regulations and restrictions. At a minimum, this certification shall include emission factors for criteria pollutants including nitrogen oxides, carbon monoxide, particulate matter, sulfur dioxide, non-methane hydrocarbon, and hazardous air pollutants (HPAs).
- b. Prior to installation of the engine generator at the job site, submit certified factory test data.
- c. Two weeks prior to the final inspection, submit the following.
 - Certification by the manufacturer that the engine generators conform to the requirements of the drawings and specifications.
 - 2) Certification by the Contractor that the engine generators have been properly installed, adjusted, and tested.

1.6 STORAGE AND HANDLING

- A. Engine generators shall withstand shipping and handling stresses in addition to the electrical and mechanical stresses which occur during operation of the system. Protect radiator core with wood sheet.
- B. Store the engine generators in a location approved by the COR.

1.7 JOB CONDITIONS

A. Job conditions shall conform to the arrangements and details shown on the drawings. The dimensions, enclosures, and arrangements of the engine generator system shall permit the operating personnel to safely and conveniently operate and maintain the system in the space designated for installation.

1.8 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 extent referenced. Publications are referenced in the text by designation only. B. American Society of Testing Materials (ASTM): A53/A53M-12.....Standard Specification for Pipe, Steel, Black, and Hot-Dipped, Zinc Coated Welded and Seamless B88-16.....Specification for Seamless Copper Water Tube B88M-16.....Specification for Seamless Copper water Tube (Metric) D975-17.....Diesel Fuel Oils C. Institute of Electrical and Electronic Engineers (IEEE): C37.13-15..... Low Voltage AC Power Circuit Breakers Used In Enclosures C37.90.1-12.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus D. International Code Council (ICC): IBC-15..... International Building Code E. International Organization for Standardization (ISO): Alternate Current Generating Sets - Part 1: Application, Ratings and Performance F. National Electrical Manufacturers Association (NEMA): C38.50-12..... Low-Voltage AC Power Circuit Breakers Used In Enclosures - Test Procedure ICS 6-93(R2016).....Enclosures ICS 4-15.....Application Guideline for Terminal Blocks MG 1-16.....Motor and Generators MG 2-14.....Safety Standard and Guide for Selection, Installation and Use of Electric Motors and Generators PB 2-11.....Dead-Front Distribution Switchboards Maximum) G. National Fire Protection Association (NFPA): 30-21.....Flammable and Combustible Liquids Code 37-21.....Installations and Use of Stationary Combustion Engine and Gas Turbines

> 26 32 13 - 5 ENGINE GENERATORS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 70-20.....National Electrical Code (NEC) 99-21.....Health Care Facilities 110-22..... Standard for Emergency and Standby Power Systems H. Underwriters Laboratories, Inc. (UL): 50-15..... Enclosures for Electrical Equipment 142-06.....Steel Aboveground Tanks for Flammable and Combustible Liquids 467-13.....Grounding and Bonding Equipment 489-16..... Molded-Case Circuit Breakers, Molded-Case Switches and Circuit-Breaker Enclosures 508-99..... Industrial Control Equipment 891-05.....Switchboards 1236-15.....Battery Chargers for Charging Engine-Starter Batteries 2085-97.....Insulated Aboveground Tanks for Flammable and Combustible Liquids 2200-12..... Stationary Engine Generator Assemblies

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. The engine generator system shall be in accordance with ASTM, ISO, NEMA, NFPA, UL, as shown on the drawings, and as specified herein.
- B. Provide a factory-assembled, wired (except for field connections), complete, fully automatic engine generator system, as well as all associate equipment and devices intended for the operating, control, monitoring, and remote manual stop functions.
- C. Engine Generator Parameter Schedule:
 - 1. Power Rating: Emergency Standby
 - 2. Voltage: 120/208V
 - 3. Rated Power: 300 kW continuous
 - 4. Power Factor: 0.8 lagging
 - 5. Engine Generator Application: stand-alone
 - 6. Fuel: diesel
 - 7. Voltage Regulation: + 2% (maximum) (No Load to Full Load) (standalone applications)
 - 8. Phases: 3 Phase, Wye

- 9. Each component of the engine generator system shall be capable of operating at 400 meters (1300 feet) above sea level which will have average ambient air temperature ranging from a minimum of -3.9 °C (25 °F) in winter to maximum of 33.9 °C (93°F) in summer.
- D. Assemble, connect, and wire the engine generator at the factory so that only the external connections need to be made at the construction site.
- E. Engine Generator Unit shall be factory-painted with manufacturer's primer and standard finishes.
- F. Connections between components of the system shall conform to the recommendations of the manufacturer.
- G. Couplings, shafts, and other moving parts shall be enclosed and guarded. Guards shall be metal, ruggedly constructed, rigidly fastened, and readily removable for convenient servicing of the equipment without disassembling any pipes and fittings.
- H. Engine generator shall have the following features:
 - 1. Factory-mounted on a common, rigid, welded, structural steel base.
 - Engine generator shall be statically and dynamically balanced so that the maximum vibration in the horizontal, vertical, and axial directions shall be limited to 0.15 mm (0.0059 inch), with an overall velocity limit of 24 mm/sec (0.866 inch per second) RMS, for all speeds.
 - The isolators shall be constrained with restraints capable of withstanding static forces in any direction equal to twice the weight of the supported equipment.
 - 4. Shall be capable of operating satisfactorily as specified for not fewer than 10,000 hours between major overhauls.
- Each engine generator specified for parallel operation shall be configured for automatic parallel operation.

2.2 ENGINE

- A. The engine shall be coupled directly to a generator.
- B. Minimum four cylinders.
- C. The engine shall be able to start in a 4.5 °C (40 °F) ambient temperature while using No. 2 diesel fuel oil without the use of starting aids such as glow plugs and ether injections.
- D. The engine shall be equipped with electric heater for maintaining the coolant temperature between 32-38 °C (90-100 °F), or as recommended by the manufacturer.

- Install thermostatic controls, contactors, and circuit breakerprotected circuits for the heaters.
- 2. The heaters shall operate continuously except while the engine is operating or the water temperature is at the predetermined level.

2.3 GOVERNOR

- A. Isochronous, electronic type.
- B. Steady-state speed band at 60 Hz shall not exceed plus or minus 0.33%.

2.4 LUBRICATION OIL SYSTEM

- A. Pressurized type.
- B. Positive-displacement pump driven by engine crankshaft.
- C. Full-flow strainer and full-flow or by-pass filters.
- D. Filters shall be cleanable or replaceable type and shall remove particles as small as 3 microns without removing the additives in the oil. For by-pass filters, flow shall be diverted without flow interruption.
- E. Extend lube oil sump drain line out through the skid base and terminate it with a drain valve and plug.
- F. Provide a 120-volt oil heater for exterior engine generator.

2.5 FUEL SYSTEM

- A. Main fuel storage tank(s) shall comply with the requirements of Section 23 10 00, FACILITY FUEL SYSTEMS.
- B. Shall comply with NFPA 37 and NFPA 30, and have the following features:
 - 1. Injection pump(s) and nozzles.
 - 2. Plungers shall be carefully lapped for precision fit and shall not require any packing.
 - 3. Filters or screens that require periodic cleaning or replacement shall not be permitted in the injection system assemblies.
 - Return surplus oil from the injectors to the main storage tank by gravity or a pump.
 - 5. Filter System:
 - a. Dual primary filters shall be located between the main fuel oil storage and day tank.
 - b. Secondary filters (engine-mounted) shall be located such that the oil will be thoroughly filtered before it reaches the injection system assemblies.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 c. Filters shall be cleanable or replaceable type and shall entrap

and remove water from oil as recommended by the engine manufacturer.

2.6 COOLING SYSTEM

- A. Liquid-cooled, closed loop, with fin-tube radiator mounted on the engine generator, as shown on the drawings.
- B. Cooling capacity shall not be less than the cooling requirements of the engine generator and its lubricating oil while operating continuously at 100% of its specified rating.
- C. Coolant shall be extended-life antifreeze solution, 50% ethylene glycol and 50% soft water, with corrosion inhibitor additive as recommended by the manufacturer.
- D. Fan shall be driven by a totally enclosed electric motor .
- E. Coolant hoses shall be flexible, per manufacturer's recommendation.
- F. Self-contained thermostatic-control valve shall modulate coolant flow to maintain optimum constant coolant temperature, as recommended by the engine manufacturer.
- G. Motor-Operated Dampers:
 - Dampers, which are provided under Section 23 31 00, HVAC DUCTS AND CASINGS, shall be two-position, electric motor-operated.
 - Dampers shall open simultaneously with the starting of the diesel engine and shall close simultaneously with the stopping of the diesel engine.

2.7 AIR INTAKE AND EXHAUST SYSTEMS

- A. Air Intake:
 - 1. Provide an engine-mounted air cleaner with replaceable dry filter and dirty filter indicator.

2.8 ENGINE STARTING SYSTEM

- A. The engine starting system shall start the engine at any position of the flywheel.
- B. Electric cranking motor:
 - 1. Shall be engine-mounted.
 - 2. Shall crank the engine via a gear drive.
 - 3. Rating shall be adequate for cranking the cold engine at the voltage provided by the battery system, and at the required RPM during five consecutive starting attempts of 10 seconds cranking each at

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 10-second intervals, for a total of 50 seconds of actual cranking

without damage (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).

- C. Batteries shall be nickel-cadmium high discharge rate type.
 - Each battery cell shall have minimum and maximum electrolyte level indicators and a flip-top flame arrestor vent cap.
 - Batteries shall have connector covers for protection against external short circuits.
 - 3. With the charger disconnected, the batteries shall have sufficient capacity so that the total system voltage does not fall below 85% of the nominal system voltage with the following demands: Five consecutive starting attempts of 10 seconds cranking at 10 second intervals for a total of 50 seconds of actual cranking (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
 - Battery racks shall be metal with an alkali-resistant finish and thermal insulation, and secured to the floor.
- D. Battery Charger:
 - A current-limiting battery charger, conforming to UL 1236, shall be provided and shall automatically recharge the batteries. The charger shall be capable of an equalize-charging rate for recharging fully depleted batteries within 24 hours and a floating charge rate for maintaining the batteries at fully charged condition.
 - 2. An ammeter shall be provided to indicate charging rate. A voltmeter shall be provided to indicate charging voltage.

2.9 LUBRICATING OIL HEATER

A. Provide a thermostatically-controlled electric heater to automatically maintain the oil temperature within plus or minus 1.7 $^{\circ}C$ (3 $^{\circ}F$) of the control temperature.

2.10 JACKET COOLANT HEATER

A. Provide a thermostatically-controlled electric heater mounted in the engine coolant jacketing to automatically maintain the coolant within plus or minus 1.7 °C (3 °F) of the temperature recommended by the engine manufacturer to meet the starting time specified at the minimum winter outdoor temperature.

2.11 GENERATOR

- A. Synchronous, amortisseur windings, bracket-bearing, self-venting, rotating-field type connected directly to the engine.
- B. Lifting lugs designed for convenient connection to and removal from the engine.
- C. Integral poles and spider, or individual poles dove-tailed to the spider.
- D. Designed for sustained short-circuit currents in conformance with NEMA Standards.
- E. Designed for sustained operation at 100% of the RPM specified for the engine generator without damage.
- F. Telephone influence factor shall conform to NEMA MG 1.
- G. Furnished with brushless excitation system or static-exciter-regulator assembly.
- H. Nameplates attached to the generator shall show the manufacturer's name, equipment identification, serial number, voltage ratings, field current ratings, kW/kVA output ratings, power factor rating, time rating, temperature rise ratings, RPM ratings, full load current rating, number of phases and frequency, and date of manufacture.
- I. The grounded (neutral) conductor shall be electrically isolated from equipment ground and terminated in the same junction box as the phase conductors.

2.12 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Generator circuit breaker shall be molded-case, electronic-trip type, and 100% rated, complying with UL 489. Tripping characteristics shall be adjustable long-time and short-time delay and instantaneous. Provide shunt trip to trip breaker when engine generator is shut down by other protective devices.
- B. Overcurrent protective device cubicle shall contain terminations for neutral and equipment grounding conductors as necessary.

2.13 CONTROLS

- A. Shall include Engine Generator Control Cubicle(s).
- B. General:
 - 1. Control equipment shall be in accordance with UL 508, NEMA ICS-4, ICS-6, and ANSI C37.90.1.
 - 2. Panels shall be in accordance with UL 50.
 - 3. Cubicles shall be in accordance with UL 891.

26 32 13 - 11 ENGINE GENERATORS

- 4. Coordinate controls with the automatic transfer switches shown on the drawings so that the systems will operate as specified.
- 5. Cubicles:
 - a. Code gauge steel: manufacturer's recommended heavy gauge steel with factory primer and light gray finish.
 - b. Doors shall be gasketed, attached with concealed or semiconcealed hinges, and shall have a permanent means of latching in closed position.
 - c. Panels shall be wall-mounted or incorporated in other equipment as indicated on the drawings or as specified.
 - d. Door locks for panels and cubicles shall be keyed identically to operate from a single key.
- 6. Wiring: Insulated, rated at 600 V.
 - a. Install the wiring in vertical and horizontal runs, neatly harnessed.
 - b. Terminate all external wiring at heavy duty, pressure-type, terminal blocks.
- 7. The equipment, wiring terminals, and wires shall be clearly and permanently labeled.
- The appropriate wiring diagrams shall be laminated or mounted under plexiglass within the frame on the inside of the cubicles and panels.
- 9. All indicating lamps and switches shall be accessible and mounted on the cubicle doors.
- 10. Meters shall be per the requirements of Section 25 10 10, ADVANCED UTILITY METERING.
- 11. The manufacturer shall coordinate the interconnection and programming of the generator controls with all related equipment, including automatic transfer switches and generator paralleling controls as applicable, specified in other sections.
- C. Engine generator Control Cubicle:
 - 1. Starting and Stopping Controls:
 - a. A three-position, maintained-contact type selector switch with positions marked "AUTOMATIC," "OFF," and "MANUAL." Provide flashing amber light for OFF and MANUAL positions.
 - b. A momentary contact push-button switch with positions marked "MANUAL START" and "MANUAL STOP."

- c. Selector switch in AUTOMATIC position shall cause the engine to start automatically when a single pole contact in a remote device closes. When the generator's output voltage increases to not less than 90% of its rated voltage, and its frequency increases to not less than 58 Hz, the remote devices shall transfer the load to the generator. An adjustable time delay relay, in the 0 to 15 minute range, shall cause the engine generator to continue operating without any load after completion of the period of operation with load. Upon completion of the additional 0 to 15 minute (adjustable) period, the engine generator shall stop.
- d. Selector switch in OFF position shall prevent the engine from starting either automatically or manually. Selector switch in MANUAL position shall also cause the engine to start when the manual start push-button is depressed momentarily.
- e. With selector switch is in MANUAL position, depressing the MANUAL STOP push-button momentarily shall stop the engine after a cooldown period.
- f. A maintained-contact, red mushroom-head push-button switch marked "EMERGENCY STOP" will cause the engine to stop without a cooldown period, independent of the position of the selector switch.
- 2. Engine Cranking Controls:
 - a. The cranking cycles shall be controlled by a timer that will be independent of the battery voltage fluctuations.
 - b. The controls shall crank the engine through one complete cranking cycle, consisting of four starting attempts of 10 seconds each with 10 seconds between each attempt.
 - c. Total actual cranking time for the complete cranking cycle shall be 40 seconds during a 70-second interval.
 - d. Cranking shall terminate when the engine starts so that the starting system will not be damaged. Termination of the cranking shall be controlled by self-contained, speed-sensitive switch. The switch shall prevent re-cranking of the engine until after the engine stops.
 - e. After the engine has stopped, the cranking control shall reset.
- 3. Supervisory Controls:
 - a. Overcrank:

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 1) When the cranking control system completes one cranking cycle

- (four starting attempts), without starting the engine, the OVERCRANK signal light and the audible alarm shall be energized.
- The cranking control system shall lock-out, and shall require a manual reset.
- b. Coolant Temperature:
 - When the temperature rises to the predetermined first stage level, the HIGH COOLANT TEMPERATURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the temperature rises to the predetermined second stage level, which shall be low enough to prevent any damage to the engine and high enough to avoid unnecessary engine shutdowns, the HIGH COOLANT TEMPERATURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage temperature settings shall be approximately -12 $^\circ\text{C}$ (10 $^\circ\text{F})$.
 - Permanently indicate the temperature settings near the associated signal light.
 - 5) When the coolant temperature drops to below 21 °C (70 °F), the "LOW COOLANT TEMPERATURE" signal light and the audible alarm shall be energized.
- c. Low Coolant Level: When the coolant level falls below the minimum level recommended by the manufacturer, the LOW COOLANT LEVEL signal light and audible alarm shall be energized.
- d. Lubricating Oil Pressure:
 - When the pressure falls to the predetermined first stage level, the OIL PRESSURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the pressure falls to the predetermined second stage level, which shall be high enough to prevent damage to the engine and low enough to avoid unnecessary engine shutdowns, the OIL PRESSURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage pressure settings shall be approximately 15% of the oil pressure.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 4) The pressure settings near the associated signal light shall

- be permanently displayed so that the running oil pressure can be compared to the target (setpoint) value.
- e. Overspeed:
 - 1) When the engine RPM exceeds the maximum RPM recommended by the manufacturer of the engine, the engine shall stop.
 - Simultaneously, the OVERSPEED signal light and the audible alarm shall be energized.
- f. Low Fuel Day Tank:

When the fuel oil level in the day tank decreases to less than the level at which the fuel oil transfer pump should start to refill the tank, the LOW FUEL DAY TANK light and the audible alarm shall be energized.

- g. Low Fuel Main Storage Tank: When the fuel oil level in the storage tank decreases to less than one-third of total tank capacity, the LOW FUEL-MAIN STORAGE TANK signal light and audible alarm shall be energized.
 - h. Reset Alarms and Signals:

Overcrank, Coolant Temperature, Coolant Level, Oil Pressure, Overspeed, and Low Fuel signal lights and the associated audible alarms shall require manual reset. A momentary-contact silencing switch and push-button shall silence the audible alarm by using relays or solid state devices to seal in the audible alarm in the de-energized condition. Elimination of the alarm condition shall automatically release the sealed-in circuit for the audible alarm so that it will be automatically energized again when the next alarm condition occurs. The signal lights shall require manual reset after elimination of the condition which caused them to be energized. Install the audible alarm just outside the engine generator room in a location as directed by the COR. The audible alarm shall be rated for 85 dB at 3 M (10 feet).

- i. Generator Breaker Signal Light:
 - A flashing green light shall be energized when the engine generator circuit breaker is in the OPEN or TRIPPED position.
 - 2) Simultaneously, the audible alarm shall be energized.
- 4. Monitoring Devices:

- a. Electric type gauges for the cooling water temperatures and lubricating oil pressures. These gauges may be engine mounted with proper vibration isolation.
- b. A running time indicator, totalizing not fewer than 9,999 hours, and an electric type tachometer.
- c. A voltmeter, ammeter, frequency meter, kilowatt meter, manual adjusting knob for the output voltage, and the other items shown on the drawings shall be mounted on the front of the generator control panels.
- d. Install potential and current transformers as required.
- e. Visual Indications:
 - 1) OVERCRANK
 - 2) HIGH COOLANT TEMPERATURE FIRST STAGE
 - 3) HIGH COOLANT TEMPERATURE SECOND STAGE
 - 4) LOW COOLANT TEMPERATURE
 - 5) OIL PRESSURE FIRST STAGE
 - 6) OIL PRESSURE SECOND STAGE
 - 7) LOW COOLANT LEVEL
 - 8) GENERATOR BREAKER
 - 9) OVERSPEED
 - 10) LOW FUEL DAY TANK
 - 11) LOW FUEL MAIN STORAGE TANK
- f. Lamp Test: The LAMP TEST momentary contact switch shall momentarily actuate the alarm buzzer and all the indicating lamps.
- 5. Automatic Voltage Regulator:
 - a. Shall correct voltage fluctuations rapidly and restore the output voltage to the predetermined level with a minimum amount of hunting.
 - b. Shall include voltage level rheostat located inside the control cubicle.
 - c. Provide a 3-phase automatic voltage regulator immune to waveform distortion.

2.14 REMOTE MANUAL STOP STATION

A. Shall be provided per NFPA 101, and shall be a red mushroom-head pushbutton switch.

- B. Shall be connected to the main generator control panel to provide emergency shutdown of the generator.
- C. Shall be located outside the room housing the generator.
- D. Shall have permanent label reading "EMERGENCY STOP".

2.15 REMOTE ANNUNCIATOR PANEL

- A. A remote annunciator panel shall be installed at the Engineering Control Center.
- B. The annunciator shall indicate alarm conditions as required by NFPA 99 and 110.
- C. Include control wiring between the remote annunciator panel and the engine generator. Wiring shall be as required by the manufacturer.

2.16 SOUND-ATTENUATED ENCLOSURE

- A. The engine generator and related equipment shall be housed in an outdoor weatherproof enclosure.
- B. The enclosure shall be provided with a factory-installed and factorywired panelboard, 20A 120V receptacles, and compact fluorescent light fixtures with guards and switches.
- C. Enclosure shall be weatherproof and sound-attenuated (maximum 85 dBA at 1525 mm (5 feet) from any side, top and bottom to no more than 75 dBA when measured at 15 M (50 feet) horizontally from any part of the enclosure). Sound ratings shall be based on full load condition of engine generator in a single unit operation condition.
- E. Airflow configuration shall be intake through rear of unit, and discharge air vertically up. Enclosure shall be suitable for winds up to 193 kmh (120 miles per hour) roof load shall be equal to or greater than 200 kg/sq m (40 pounds per square foot) Non-distributed loading as required.
- F. The enclosure shall meet the following requirements:
 - Radiator exhaust outlet shall be ducted through the end of the enclosure.
 - All exterior surfaces shall be factory-painted with industrial enamel.
 - Unit shall have sufficient guards to prevent entrance by small animals.
 - 4. Batteries shall fit inside enclosure and alongside the engine generator. Batteries under the generator are not acceptable.

5. The muffler shall be mounted and thermally-insulated inside the enclosure.

2.17 SPARE PARTS

- A. For each engine generator:
 - 1. Six lubricating oil filters.
 - 2. Six primary fuel oil filters.
 - 3. Six secondary fuel oil filters.
 - 4. Six intake air filters.
- B. For each battery charger:
 - 1. Three complete sets of fuses.
- C. For each control panel:
 - 1. Three complete sets of fuses, if applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install concrete bases of dimensions shown on the drawings.
- B. Installation of the engine generator shall comply with manufacturer's written instructions and with NFPA 110.
- C. Mounting:
 - Support the base of engine generator on vibration isolators, each isolator bolted to the floor (pad), and the generator base bolted to isolator.
 - Install sufficient isolators so that the floor (pad) bearing pressure under each isolator is within the floor (pad) loading specification.
 - Install equal number of isolators on each side of the engine generator's base.
 - Locate isolators for approximately equal load distribution and deflection per isolator. The base of the engine generator shall be drilled at the factory for the isolator bolts.
 - 5. Isolators shall be shipped loose with the engine generator.
 - 6. All connections between the engine generator and exterior systems, such as fuel lines, electrical connections, and engine exhaust system and air exhaust shroud, shall be flexible.
- D. In seismic areas, engine generators shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- E. Balance:

- The vibration velocity in the horizontal, vertical, and axial directions shall not exceed 16.25 mm (0.65 inch) per second peak at any specific frequency. These limits apply to main structural components such as the engine block and the generator frame at the bearings.
- F. Connect all components of the generator system so that they will continue to be energized during failure of the normal electrical power supply system.
- G. Install piping between engine generator and remote components of cooling, fuel, and exhaust systems.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Provide the services of a factory-authorized, factory-trained representative of the engine generator manufacturer to inspect fieldassembled components and equipment installation, and to supervise the field tests.
- B. When the complete engine generator system has been installed and prior to the final inspection, test all components of the system in the presence of the COR for proper operation of the individual components and the complete system and to eliminate electrical and mechanical defects.
- C. Furnish fuel oil, lubricating oil, anti-freeze liquid, water treatment, rust-inhibitor, and load bank for testing of the engine generator.
- D. Visual Inspection: Visually verify proper installation of engine generator and all components per manufacturer's pre-functional installation checklist.
- E. Set engine generator circuit breaker protective functions per Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY.
- F. Field Tests:
 - 1. Perform manufacturer's after-starting checks and inspections.
 - Test the engine generator for six hours of continuous operation as follows:
 - a. Two hours while delivering 100% of the specified $k \ensuremath{\mathbb{W}}.$
 - b. Four hours while the engine generator is delivering 80% of its specified kW rating.
 - c. If during the 6-hour continuous test, an engine generator failure occurs or the engine generator cannot maintain specified power output, the test(s) are null and void. After repair and/or

26 32 13 - 19 ENGINE GENERATORS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 adjustments, the test(s) shall be repeated at no additional cost to the Government until satisfactory results are attained. 3. Record the following test data at 30-minute intervals: a. Time of day, as well as reading of running time indicator. b. kW. c. Voltage on each phase. d. Amperes on each phase. e. Engine RPM. f. Frequency. g. Coolant water temperature. h. Fuel pressure. i. Oil pressure. j. Outdoor temperature. k. Average ambient temperature in the vicinity of the engine generator. 4. Demonstrate that the engine generator will attain proper voltage and frequency within the specified time limit from a cold start after the closing of a single contact. 5. Furnish a resistance-type load for the testing of the engine generator. Test loads shall always include adequate resistance to assure stability of the loads and equipment during all of the testing operations. The test load kW rating shall not be less than 100% of the specified kW rating of the engine generator. G. Starting System Test: 1. Demonstrate that the batteries and cranking motor are capable of five starting attempts of 10 seconds cranking each at 10-second intervals with the battery charger turned off. H. Remote Annunciator Panel and Remote Manual Stop Tests: Simulate conditions to verify proper operation of each visual or audible indication, interconnecting hardware and software, and reset

- button. Simulate emergency stop of the generator by initiating the remote manual stop station, while the generator is in operation.
- I. Fuel systems shall be flushed and tested per Section 23 10 00, FACILITY FUEL SYSTEMS: Fuel supply and storage requirements.
- J. Automatic Operation Tests:

Test the engine generator and associated automatic transfer switches to demonstrate automatic starting, loading and unloading. The load for

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-18 this test shall be the actual connected loads. Initiate loss of normal source and verify the specified sequence of operation. Restore the

normal power source and verify the specified sequence of operation. Verify resetting of controls to normal.

- L. At the completion of the field tests, fill the main storage tank and day tank with fuel of grade and quality as recommended by the manufacturer of the engine. Fill all engine fluids to levels as recommended by manufacturer.
- M. When any defects are detected during the tests, correct all the deficiencies and repeat all or part of the 6-hour continuous test as requested by the COR, at no additional cost to the Government.
- N. Provide test and inspection results in writing to the COR.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the engine generator(s) and control and annunciation components are in good operating condition and properly performing the intended function.

3.4 INSTRUCTIONS AND FINAL INSPECTIONS

- A. Laminate or mount under acrylic resin a set of operating instructions for the system and install instructions within a frame mounted on the wall near the engine generator at a location per the COR.
- B. Furnish the services of a competent and factory-trained technician for one 4-hour period for instructions to VA personnel in operation and maintenance of the equipment, on the date requested by the COR.

---END---

SECTION 26 43 13 SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: For factory-installed or external SPD.
- C. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: For factory-installed or external SPD.
- D. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the SPD has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02.....Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits IEEE C62.45-08.....Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - UL 1283-15..... Electromagnetic Interference Filters
 - UL 1449-14.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 SWITCHBOARD SPD

- A. General Requirements:
 - 1. Comply with IEEE and UL.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status.

26 43 13 - 2 SURGE PROTECTIVE DEVICES Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.

- 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 240kA per phase.

2.2 PANELBOARD SPD

- A. General Requirements:
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

2.3 ENCLOSURES

A. Enclosures: NEMA 1or 3R as indicated on the Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Factory-installed SPD: Switchboard, or panelboard manufacturer shall install SPD at the factory.
- C. Field-installed SPD: Contractor shall install SPD with conductors or buses between SPD and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 - Provide a circuit breaker as a dedicated disconnecting means for TVSS as shown on drawings.

D. Do not perform insulation resistance tests on switchboards, panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
 - d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - f. Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the COR.

`---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirement for seismic restraint for nonstructural components.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- G. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- H. Section 27 52 23, NURSE CALL AND CODE BLUE SYSTEMS: For pillow speaker control of the wall-mounted bedlight fixtures.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

- a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
- b. Material and construction details, include information on housing and optics system.
- c. Physical dimensions and description.
- d. Wiring schematic and connection diagram.
- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13.....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings C. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment E. Illuminating Engineering Society of North America (IESNA): LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products LM-80-15..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995).....Surge Voltages in Low Voltage AC Power Circuits G. International Code Council (ICC): IBC-15..... International Building Code H. National Electrical Manufacturer's Association (NEMA): SSL 1-16..... Electronic Drivers for LED Devices, Arrays, or Systems I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18.....Life Safety Code J. Underwriters Laboratories, Inc. (UL): 496-17....Lampholders 844-12..... (Classified) Locations 924-16..... Emergency Lighting and Power Equipment 1598-08.....Luminaires 2108-15.....Low-Voltage Lighting Systems 8750-15.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

> 26 51 00 - 3 INTERIOR LIGHTING

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Drivers and lamps shall be serviceable while the fixture is in its normally installed position. Drivers shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- E. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- F. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.

- Interior light reflecting finishes shall be white with not less than
 85 percent reflectance, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- G. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- H. Light Transmitting Components for Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
 - 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.

2.2 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.3 LED LIGHT FIXTURES

A. General:

- 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
- LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
- 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20 $^{\circ}$ C. (-4 $^{\circ}$ F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
- LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20-gauge metal backing plate that is attached to the studs in the

walls. Lighting fixtures shall not be attached directly to gypsum board.

- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
 - 5. Hardware for surface mounting fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 6 mm (1/4 inch) secured to channel members attached to and spanning the tops of the ceiling structural grid members. Nonturning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 6 mm (1/4 inch) studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the

ceiling. In lieu of the above, 6 mm (1/4 inch) toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.

- 6. Hardware for recessed lighting fixtures:
 - a. All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.
 - b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
 - d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 7. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit.

The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.

- b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - The outlet box is supported vertically from the building structure.
- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 8. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 9. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.

- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
 - b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---
SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere			
AC	Alternating Current			
AE	Architect and Engineer			
AFF	Above Finished Floor			
AHJ	Authority Having Jurisdiction			
ANSI	ANSI American National Standards Institute			
AWG	AWG American Wire Gauge (refer to STP and UTP)			
AWS	Advanced Wireless Services			
BCT	Bonding Conductor for Telecommunications (also			
	Telecommunications Bonding Conductor (TBC))			
BDA	Bi-Directional Amplifier			
BICSI	Building Industry Consulting Service International			
BIM	Building Information Modeling			
BOM	Bill of Materials			
BTU	British Thermal Units			
BUCR	Back-up Computer Room			
BTS	Base Transceiver Station			

CAD	AutoCAD			
CBOPC	Community Based Out Patient Clinic			
CBC	Coupled Bonding Conductor			
CBOC	Community Based Out Patient Clinic (refer to CBOPC,			
	OPC, VAMC)			
CCS	TIP's Cross Connection System (refer to VCCS and			
	HCCS)			
CFE	Contractor Furnished Equipment			
CFM	US Department of Veterans Affairs Office of			
	Construction and Facilities Management			
CFR	Consolidated Federal Regulations			
CIO	Communication Information Officer (Facility, VISN or			
	Region)			
CM	Centimeters			
CO	Central Office			
COR	Contracting Officer Representative			
CPU	Central Processing Unit			
CSU	Customer Service Unit			
CUP	Conditional Use Permit(s) - Federal/GSA for VA			
dB	Decibel			
dBm	Decibel Measured			
dBmV	Decibel per milli-Volt			
DC	Direct Current			
DEA	United States Drug Enforcement Administration			
DSU	Data Service Unit			
EBC	Equipment Bonding Conductor			
ECC	Engineering Control Center (refer to DCR, EMCR)			
EDGE	Enhanced Data (Rates) for GSM Evolution			
EDM	Electrical Design Manual			
EMCR	Emergency Management Control Room (refer to DCR, ECC)			
EMI	Electromagnetic Interference (refer to RFI)			
EMS	Emergency Medical Service			

EMT	Electrical Metallic Tubing or thin wall conduit
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,
	LEC)
EPBX	Electronic Digital Private Branch Exchange
ESR	Vendor's Engineering Service Report
FA	Fire Alarm
FAR	Federal Acquisition Regulations in Chapter 1 of Title
	48 of Code of Federal Regulations
FMS	VA's Headquarters or Medical Center Facility's
	Management Service
FR	Frequency (refer to RF)
FTS	Federal Telephone Service
GFE	Government Furnished Equipment
GPS	Global Positioning System
GRC	Galvanized Rigid Metal Conduit
GSM	Global System (Station) for Mobile
HCCS	TIP's Horizontal Cross Connection System (refer to
	CCS & VCCS)
HDPE	High Density Polyethylene Conduit
HDTV	Advanced Television Standards Committee High-
	Definition Digital Television
HEC	Head End Cabinets(refer to HEIC, PA)
HEIC	Head End Interface Cabinets (refer to HEC, PA)
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
HSPA	High Speed Packet Access
ΗZ	Hertz
IBT	Intersystem Bonding Termination (NEC 250.94)
IC	Intercom
ICRA	Infectious Control Risk Assessment
IDEN	Integrated Digital Enhanced Network
IDC	Insulation Displacement Contact
TDF	Intermediate Distribution Frame

ILSM	Interim Life Safety Measures
IMC	Rigid Intermediate Steel Conduit
IRM	Department of Veterans Affairs Office of Information
	Resources Management
ISDN	Integrated Services Digital Network
ISM	Industrial, Scientific, Medical
IWS	Intra-Building Wireless System
LAN	Local Area Network
LBS	Location Based Services, Leased Based Systems
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)
LED	Light Emitting Diode
LMR	Land Mobile Radio
LTE	Long Term Evolution, or 4G Standard for Wireless Data
	Communications Technology
М	Meter
MAS	Medical Administration Service
MATV	Master Antenna Television
MCR	Main Computer Room
MCOR	Main Computer Operators Room
MDF	Main Distribution Frame
MH	Manholes or Maintenance Holes
MHz	Megaherts (10 ⁶ Hz)
mm	Millimeter
MOU	Memorandum of Understanding
MW	Microwave (RF Band, Equipment or Services)
NID	Network Interface Device (refer to DEMARC)
NEC	National Electric Code
NOR	Network Operations Room
NRTL	OSHA Nationally Recognized Testing Laboratory
NS	Nurse Stations
NTIA	U.S. Department of Commerce National
	Telecommunications and Information Administration

OEM	Original Equipment Manufacturer	
0I&T	Office of Information and Technology	
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)	
OSH	Department of Veterans Affairs Office of Occupational	
	Safety and Health	
OSHA	United States Department of Labor Occupational Safety	
	and Health Administration	
OTDR	Optical Time-Domain Reflectometer	
PA	Public Address System (refer to HE, HEIC, RPEC)	
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)	
PCR	Police Control Room (refer to SPCC, could be	
	designated SCC)	
PCS	Personal Communications Service (refer to UPCS)	
PE	Professional Engineer	
PM	Project Manager	
PoE	Power over Ethernet	
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,	
	PBX)	
PSTN	Public Switched Telephone Network	
PSRAS	Public Safety Radio Amplification Systems	
PTS	Pay Telephone Station	
PVC	Poly-Vinyl Chloride	
PWR	Power (in Watts)	
RAN	Radio Access Network	
RBB	Rack Bonding Busbar	
RE	Resident Engineer or Senior Resident Engineer	
RF	Radio Frequency (refer to FR)	
RFI	Radio Frequency Interference (refer to EMI)	
RFID	RF Identification (Equipment, System or Personnel)	
RMC	Rigid Metal Conduit	
RMU	Rack Mounting Unit	
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,	

_

	PA)			
RTLS	Real Time Location Service or System			
RUS	Rural Utilities Service			
SCC	Security Control Console (refer to PCR, SPCC)			
SMCS	Spectrum Management and Communications Security			
	(COMSEC)			
SFO	Solicitation for Offers			
SME	Subject Matter Experts (refer to AHJ)			
SMR	Specialized Mobile Radio			
SMS	Security Management System			
SNMP	Simple Network Management Protocol			
SPCC	Security Police Control Center (refer to PCR, SMS)			
STP	Shielded Balanced Twisted Pair (refer to UTP)			
STR	Stacked Telecommunications Room			
TAC	VA's Technology Acquisition Center, Austin, Texas			
TCO	Telecommunications Outlet			
TER	Telephone Equipment Room			
TGB	Telecommunications Grounding Busbar (also Secondary			
	Bonding Busbar (SBB))			
TIP	Telecommunications Infrastructure Plant			
TMGB	Telecommunications Main Grounding Busbar (also			
	Primary Bonding Busbar (PBB))			
TMS	Traffic Management System			
TOR	Telephone Operators Room			
TP	Balanced Twisted Pair (refer to STP and UTP)			
TR	Telecommunications Room (refer to STR)			
TWP	Twisted Pair			
UHF	Ultra High Frequency (Radio)			
UMTS	Universal Mobile Telecommunications System			
UPCS	Unlicensed Personal Communications Service (refer to			
	PCS)			
UPS	Uninterruptible Power Supply			

USC	United States Code			
UTP	Unshielded Balanced Twisted Pair (refer to TP and			
	STP)			
UV	Ultraviolet			
V	Volts			
VAAR	Veterans Affairs Acquisition Regulation			
VACO	Veterans Affairs Central Office			
VAMC	C VA Medical Center (refer to CBOC, OPC, VACO)			
VCCS	TIP's Vertical Cross Connection System (refer to CCS			
	and HCCS)			
VHF	Very High Frequency (Radio)			
VISN	Veterans Integrated Services Network (refers to			
	geographical region)			
VSWR	Voltage Standing Wave Radio			
W	Watts			
WEB	World Electronic Broadcast			
WiMAX	Worldwide Interoperability (for MW Access)			
WI-FI	Wireless Fidelity			
WMTS	Wireless Medical Telemetry Service			
WSP	Wireless Service Providers			

B. Definitions:

- 1. Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles

such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

- 7. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 9. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 10. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 11. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 12. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 13. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 14. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 15. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between

equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.

- 16. Microducts: All forms of air blown fiber pathways.
- 17. Ohm: A unit of restive measurement.
- 18. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 19. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 20. Sound (SND): Changing air pressure to audible signals over given time span.
- 21. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 22. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 1/0 AWG) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 23. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 24. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to

> 27 05 11 - 9 REOUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

extent referenced. Such standards are made a part of these documents by reference.

- 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
- 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.

B. Government Codes, Standards and Executive Orders: Refer to

- http://www.cfm.va.gov/TIL/cPro.asp:
 - 1. Federal Communications Commission, (FCC) CFR, Title 47:
 - Part 15 Restrictions of use for Part 15 listed RF Equipment in Safety of Life Emergency Functions and Equipment Locations Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Part 58 Television Broadcast Service Part 73 Radio and Television Broadcast Rules Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration National Telecommunications and Information Chapter XXIII Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book'- Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations 2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations RUS Bull 1751F-643 Underground Plant Design
 - RUS Bull 1751F-815 Electrical Protection of Outside Plants,
 - RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants (PC-4) RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2)
 - RUS Bull 345-50Trunk Carrier Systems (PE-60)

27 05 11 - 10

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 RUS Bull 345-65 Shield Bonding Connectors (PE-65) RUS Bull 345-72 Filled Splice Closures (PE-74) RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80) 3. US Department of Commerce/National Institute of Standards Technology, (NIST): FIPS PUB 1-1 Telecommunications Information Exchange FIPS PUB 100/1 Interface between Data Terminal Equipment (DTE) Circuit Terminating Equipment for operation with Packet Switched Networks, or Between Two DTEs, by Dedicated Circuit FIPS PUB 140/2 Telecommunications Information Security Algorithms FIPS PUB 143 General Purpose 37 Position Interface between DTE and Data Circuit Terminating Equipment FIPS 160/2 Electronic Data Interchange (EDI), FIPS 175 Federal Building Standard for Telecommunications Pathway and Spaces Guideline for the Analysis of Local Area FIPS 191 Network Security FIPS 197 Advanced Encryption Standard (AES) FIPS 199 Standards for Security Categorization of Federal Information and Information Systems 4. US Department of Defense, (DoD): MIL-STD-188-110 Interoperability and Performance Standards for Data Modems MIL-STD-188-114 Electrical Characteristics of Digital Interface Circuits MIL-STD-188-115 Communications Timing and Synchronizations Subsystems MIL-C-28883 Advanced Narrowband Digital Voice Terminals Connectors, Receptacle, Electrical, Coaxial, MIL-C-39012/21 Radio Frequency, (Series BNC (Uncabled), Socket Contact, Jam Nut Mounted, Class 2)

5. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules

- US Department of Justice:
 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
- 7. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at

http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.htm
1)

- Subpart 35 Compliance with NFPA 101, Life Safety Code
- Subpart 36 Design and Construction Requirements for Exit Routes
- Subpart 268 Telecommunications

```
Subpart 305 Wiring Methods, Components, and Equipment for General Use
```

- Subpart 508 Americans with Disabilities Act Accessibility Guidelines; technical requirement for accessibility to buildings and facilities by individuals with disabilities
- 8. US Department of Transportation, (DoT):
 - Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.

- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/dts/otpca/nrtl/index.html
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL): 1-2005 Flexible Metal Conduit

5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment

1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety
D. Industry Standards:	
1. Advanced Television	Systems Committee (ATSC):
A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
	Digital Television System
A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
	RF/Transmission System Characteristics
A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
	Service Multiplex and Transport System
	Characteristics
A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
	2 Video System Characteristics
A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
	Audio System Characteristics
A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
	Enhanced AC-3 Audio System Characteristics

- American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities.
- 3. American Society for Testing and Materials (ASTM):
 - B1 (2001)Standard Specification for Hard-Drawn CopperWireB8 (2004)Standard Specification for Concentric-Lay-
Stranded Copper Conductors, Hard, Medium-Hard,
 - or Soft
 - D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3)
 - D2301 (2004) Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape
 - B258-02 (2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors
 - D709-01(2007) Standard Specification for Laminated Thermosetting Materials D4566 (2008) Standard Test Methods for Electrical Performance Properties of Insulations and
 - Jackets for Telecommunications Wire and Cable
- 4. American Telephone and Telegraph Corporation (AT&T) Obtain following AT&T Publications at https://ebiznet.sbc.com/SBCNEBS/): ATT-TP-76200 (2013) Network Equipment and Power Grounding, Environmental, and Physical Design Requirements ATT-TP-76300(2012) Merged AT&T Affiliate Companies Installation Requirements ATT-TP-76305 (2013) Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways ATT-TP-76306 (2009) Electrostatic Discharge Control ATT-TP-76400 (2012) Detail Engineering Requirements ATT-TP-76402 (2013) AT&T Raised Access Floor Engineering and Installation Requirements

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 ATT-TP-76405 (2011) Technical Requirements for Supplemental Cooling

ATT-TP-76416 (2011) Grounding and Bonding Requirements for Network Facilities

ATT-TP-76440 (2005) Ethernet Specification

ATT-TP-76450 (2013) Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces ATT-TP-76461 (2008) Fiber Optic Cleaning

ATT-TP-76900 (2010) AT&T Installation Testing Requirement

ATT-TP-76911 (1999) AT&T LEC Technical Publication Notice

- 5. British Standards Institution (BSI):
- BS EN 50109-2 Hand Crimping Tools Tools for The Crimp Termination of Electric Cables and Wires for Low Frequency and Radio Frequency Applications - All Parts & Sections. October 1997
- 6. Building Industry Consulting Service International(BICSI): ANSI/BICSI 002-2011 Data Center Design and Implementation Best
 - ANSI/BICSI 004-2012 Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities

ANSI/NECA/BICSI 568-2006 Standard for Installing Commercial Building

Telecommunications Cabling

Practices

- NECA/BICSI 607-2011 Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings
- ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System Design and Implementation Best Practices
- 7. Electronic Components Assemblies and Materials Association, (ECA). ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices – Recommended Procedures for User Certification

EIA/ECA 310-E (2005) Cabinets, and Associated Equipment

- Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities.
- 9. Insulated Cable Engineers Association (ICEA):

S-80-576-2002 Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications Wiring Systems

ANSI/ICEA

ANSI/ICEA

S-84-608-2010 Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640(2011) Optical Fiber Outside Plant Communications Cable

ANSI/ICEA

S-90-661-2012 Category 3, 5, & 5e Individually Unshielded Twisted-Pair Indoor Cable for Use in General Purpose and LAN Communication Wiring Systems S-98-688 (2012) Broadband Twisted Pair Cable Aircore, Polyolefin Insulated, Copper Conductors S-99-689 (2012) Broadband Twisted Pair Cable Filled, Polyolefin Insulated, Copper Conductors

ICEA S-102-700 (2004)

C62.41.2-2002/

- (2004) Category 6 Individually Unshielded Twisted Pair Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements
- 10. Institute of Electrical and Electronics Engineers (IEEE):
 ISSN 0739-5175 March-April 2008 Engineering in Medicine and
 Biology Magazine, IEEE (Volume: 27, Issue:2)
 Medical Grade-Mission Critical-Wireless
 Networks

IEEE C2-2012 National Electrical Safety Code (NESC)

- Cor 1-2012 IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits 4)
- C62.45-2002 IEEE Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits

81-2012 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System
 100-1992 IEEE the New IEEE Standards Dictionary of

Electrical and Electronics Terms

602-2007 IEEE Recommended Practice for Electric Systems in Health Care Facilities

- 1100-2005 IEEE Recommended Practice for Powering and Grounding Electronic Equipment
- 11. International Code Council:

AC193 (2014) Mechanical Anchors in Concrete Elements

- 12. International Organization for Standardization (ISO):
- ISO/TR 21730 (2007) Use of Mobile Wireless Communication and Computing Technology in Healthcare Facilities -Recommendations for Electromagnetic Compatibility (Management of Unintentional Electromagnetic Interference) with Medical Devices

13. National Electrical Manufacturers Association (NEMA):

NEMA 250 (2008) Enclosures for Electrical Equipment (1,000V Maximum)

ANSI C62.61 (1993) American National Standard for Gas Tube Surge Arresters on Wire Line Telephone Circuits

- ANSI/NEMA FB 1 (2012)Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing EMT) and Cable
- ANSI/NEMA OS 1 (2009)Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports
- NEMA SB 19 (R2007) NEMA Installation Guide for Nurse Call Systems TC 3 (2004) Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing
- NEMA VE 2 (2006) Cable Tray Installation Guidelines
- 14. National Fire Protection Association (NFPA):

70E-2015	Standard	for Electri	ical	Safety	in	the	Workplace
70-2017	National	Electrical	Code	e (NEC)			
72-2016	National	Fire Alarm	Code	9			

75-2017 Standard for the Fire Protection of Information Technological Equipment 76-2016 Recommended Practice for the Fire Protection of Telecommunications Facilities 77-2014 Recommended Practice on Static Electricity 90A-2018 Standard for the Installation of Air Conditioning and Ventilating Systems 99-2018 Health Care Facilities Code 101-2018 Life Safety Code 241 Safeguarding construction, alternation and Demolition Operations 255-2006 Standard Method of Test of Surface Burning Characteristics of Building Materials 262 - 2011 Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces 780-2014 Standard for the Installation of Lightning Protection Systems 1221-2013 Standard for the Installation, Maintenance, and Use of Emergency Services Communications Systems 5000-2015 Building Construction and Safety Code 15. Society for Protective Coatings (SSPC): SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning 16. Society of Cable Telecommunications Engineers (SCTE): ANSI/SCTE 15 2006 Specification for Trunk, Feeder and Distribution Coaxial Cable 17. Telecommunications Industry Association (TIA): TIA-120 Series Telecommunications Land Mobile communications (APCO/Project 25) (January 2014) TIA TSB-140 Additional Guidelines for Field-Testing Length, Loss and Polarity of Optical Fiber Cabling Systems (2004) TIA-155 Guidelines for the Assessment and Mitigation of Installed Category 6 Cabling to Support 10GBASE-T (2010)

TIA TSB-162-A Telecommunications Cabling Guidelines for Wireless Access Points (2013) TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas (2014) TIA/EIA-423-B Electrical Characteristics of Unbalanced Voltage Digital Interface Circuits (2012) TIA-455-C General Requirements for Standard Test Procedures for Optical Fibers, Cables, Transducers, Sensors, Connecting and Terminating Devices, and other Fiber Optic Components (August 2014) TIA-455-53-A FOTP-53 Attenuation by Substitution Measurements for Multimode Graded-Index Optical Fibers in Fiber Assemblies (Long Length) (September 2001) FOTP-61 Measurement of Fiber of Cable TIA-455-61-A Attenuation Using an OTDR (July 2003) Fiber Optic Communications Cable for Outside ТІА-472D000-В Plant Use (July 2007) 62.5-µ Core Diameter/125-um Cladding Diameter ANSI/TIA-492-B Class 1a Graded-Index Multimode Optical Fibers (November 2009) ANSI/TIA-492AAAB-A 50-um Core Diameter/125-um Cladding Diameter Class IA Graded-Index Multimode Optically Optimized American Standard Fibers (November 2009 TIA-492CAAA Detail Specification for Class IVa Dispersion-Unshifted Single-Mode Optical Fibers (September 2002) TIA-492E000 Sectional Specification for Class IVd Nonzero-Dispersion Single-Mode Optical Fibers for the 1,550 nm Window (September 2002) TIA-526-7-B Measurement of Optical Power Loss of Installed Single-Mode Fiber Cable Plant - OFSTP-7 (December 2008)

TIA-526.14-A Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant - SFSTP-14 (August 1998)

- TIA-568 Revision/Edition: C Commercial Building Telecommunications Cabling Standard Set: (TIA-568-C.0-2 Generic Telecommunications Cabling for Customer Premises (2012), TIA-568-C.1-1 Commercial Building Telecommunications Cabling Standard Part 1: General Requirements (2012), TIA-568-C.2 Commercial Building Telecommunications Cabling Standard-Part 2: Balanced Twisted Pair Cabling Components (2009), TIA-568-C.3-1 Optical Fiber Cabling Components Standard, (2011) AND TIA-568-C.4 Broadband Coaxial Cabling and Components Standard (2011) with addendums and erratas TIA-569 Revision/Edition C Telecommunications Pathways
- TIA-574 Position Non-Synchronous Interface between Data Terminal equipment and Data Circuit Terminating Equipment Employing Serial Binary Interchange (May 2003)

and Spaces (March 2013)

TIA/EIA-590-A Standard for Physical Location and Protection of Below Ground Fiber Optic Cable Plant (July 2001)

TIA-598-D Optical Fiber Cable Color Coding (January 2005) TIA-604-10-B Fiber Optic Connector Intermateablility Standard (August 2008)

ANSI/TIA-606-B Administration Standard for Telecommunications Infrastructure (2012)

TIA-607-B Generic Telecommunications Bonding and Grounding (Earthing) For Customer Premises (January 2013)

TIA-613 High Speed Serial Interface for Data Terminal Equipment and Data Circuit Terminal Equipment (September 2005)

ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
 - 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
 - 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
 - Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
 - Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.

- General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 9. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- 10. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 11. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 12. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 13. Underground ducts, raceways, precast manholes and pull boxes: Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.
- 14. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- 15. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 16. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 17. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 18. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 19. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
- 20. Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.

21. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - Movement of materials: Unload materials and equipment delivered to site. Pay costs for rigging, hoisting, lowering and moving equipment on and around site, in building or on roof.
 - Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. Plan for large equipment requiring positioning prior to closing in building.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 - 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - Manage work related to telecommunications system installation in a manner approved by manufacturer.

27 05 11 - 25

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per

27 05 11 - 26

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.

- H. Test Equipment List:
 - Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.
 - 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
 - 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
 - Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.

K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - Provide a Table of Contents and assemble files to conform to Table of Contents.
 - 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.

- j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
- k. Warranty documentation indicating end date and equipment protected under warranty.
- Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
 - 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
 - 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
 - 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.

- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg and .rvt formats as determined by COR.
- Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.

- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:

- 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

A. Comply with FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.
- B. In cases of renovations in historic or otherwise restrictive buildings, where it has been determined as impossible to follow above stated guidelines, exceptions must not modify maximum distances set forth in TIA 568 and 569; and exceptions must not in any way effect performance of entire TIP system.
- C. Modification to administrative issues requires written approvals from COR with concurrence from SMCS 0050P2H3, OEM, contractor, and local authorities.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 UNDERGROUND CABLES

- A. Provide buried closure suitable for enclosing a straight, butt, and branch splice in a container into which can be poured an encapsulating compound.
- B. Provide closure of adequate strength to protect splice and maintain cable shield electrical continuity in buried environment.
- C. Provide re-enterable encapsulating compound maintaining chemical stability of closure.
- D. Provide filled splice cases in accordance with RUS Bull 345-72.
- E. Provide gel filled cable meeting requirements of ICEA S-99-689.
- F. In Vault or Manhole:

- Provide underground closure suitable to house a straight, butt, and branch splice in a protective housing into which can be poured an encapsulating compound
- Closure must be suitable thermoplastic, thermo-set, or stainless steel material supplying structural strength to pass mechanical and electrical requirements in a vault or maintenance hole (manhole) environment.
- G. Re-Enterable Encapsulating Compound: Product maintaining chemical stability of closure.
- H. Provide gel-filled splice cases in accordance with RUS Bull 345-72.

2.7 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - 5. Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.

- Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
- Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
- 8. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.

- a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
- b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
- Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.

3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.

- 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - Contractor is not eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.

- 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B pin assignments and cabling connections are in compliance with TIA standards.
- Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
- Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- Facility COR will ensure test documents become a part of system's official documentation package.

- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - 2. Measure and record signal, aural and control carrier levels of each voice and data channel, at each of the following minimum points in system:
 - a. Buried conduit duct locations.
 - b. Maintenance Holes (Manholes) and hand holes.
 - c. TER interconnections.
 - d. Control room interconnections.
 - e. TR interconnections.
 - f. System interfaces in locations listed herein.
 - g. HE interconnections.
 - h. System and lightning ground interconnections.
 - i. Communications circulating ground system.
 - j. UPS areas.
 - k. Emergency generator interconnections.
 - 1. Each general floor areas.
 - m. Others as required by AHJ (SMCS 0050P2H3).
 - 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.
- I. Acceptance Test:
 - Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - 3) EMS Representatives: Police, Sherriff, City, County or State representatives.
- Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.

- If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - A system inventory including available spare parts must be taken at this time.
 - Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - Inventory system diagrams, record drawings, equipment manuals, pretest results.
 - Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:
 - 1. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:

- If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
- 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
- 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.

C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Ground Rods:

- Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
 - 1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
 - 2. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:
 - Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:

- a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
- b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
- c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
- d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole
 grounding lugs.
- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each 12-24 x 19.1 mm (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.

- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- H. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), antennas, satellite dishes, towers, raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Install telecommunications bonding backbone conductor throughout building via telecommunications backbone pathways effectively bonding all interior telecommunications grounding busbars in telecommunications rooms, to telecommunications main grounding busbar in Demarc room after testing bond to verify bonding conductor for telecommunications from grounding electrode conductor is installed per NEC. Size telecommunications bonding backbone conductor as specified in TIA-607-B.
- C. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- D. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- E. Boxes, Cabinets, and Enclosures:
 - 1. Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special

grounding systems for intensive care units and other critical units shown) to ground.

- F. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- G. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 5. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
 - 6. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.
 - 7. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
 - 8. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate,

use zinc-plated external tooth lock washers or Belleville Washers.

- b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lock washers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
- c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
- d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.
- H. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
 - 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:
 - Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
 - Install 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.
- I. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,

- At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
 - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
 - d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- J. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- K. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- L. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to

an effective ground source and bond all other metallic components and equipment at that location.

- M. Communications Cable Tray Systems:
 - 1. Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.
 - 2. Where metallic cable tray systems are mechanically discontinuous:
 - a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is 0.010 ohms or less, as verified by measuring across splice plate connection.
 - b. Install 16 $\rm mm^2$ (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
 - 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.
- N. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
 - Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.
- O. Ground Resistance:
 - Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
 - Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
 - Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.

- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Bedding of conduits: Section 31 20 00, EARTH MOVING.
- B. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- C. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- D. Fabrications for deflection of water away from building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- E. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- F. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

A. Minimum Conduit Size: 19 mm (3/4 inch).

- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
 - Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
 - 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
 - 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
 - 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
 - Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
 - 8. Surface Metal Raceway: Conform to UL 5.
 - 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.

27 05 33 - 2

- f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- g. Provide OEM approved fittings.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:

27 05 33 - 3

- a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
- b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
- c. Provide connectors with insulated throats to prevent damage to cable jacket.
- d. Provide OEM approved fittings.
- Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.
- Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 9. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30-degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 10. Rigid Aluminum Fittings:
 - a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
 - d. Indent type connectors or couplings are prohibited.

- e. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made of "pot metal" are not permitted.
- f. Provide OEM approved fittings.
- 11. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.

- 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
- 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
- 5. Size: Metric Designator 53 (trade size 2) or smaller.
- Outside Plant: Plenum-rated where each innerduct is 75 mm (3 inches) and larger.
- 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
- 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
- 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- I. Outlet Boxes:
 - Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 - 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.
- K. Cable Tray:
 - Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.

- 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
- 3. Provide continuous welded top side wire to protect cable insulation and installers.
- 4. High strength steel wires formed into a 50 x 100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
- 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: As indicated on the Drawings.
 - c. Width: As indicated on the Drawings.
- 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
- 7. Provide accessories to protect, support and install wire basket tray system.
- L. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- M. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Master Antenna Television Equipment and Systems	27 41 31	J-Hooks, Bridle Rings, conduit to Cable Tray, Partitioned Cable Tray
Public Address and Mass Notification Systems	27 51 16	Complete conduit

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

System	Specification Section	Installed Method
Intercommunications and Program systems	27 51 23	Conduit to Cable Tray, Partitioned Cable Tray
Nurse Call	27 52 23	Complete Conduit
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code
Physical Access Control System	28 13 00	Conduit to Cable Tray Partitioned Cable Tray
Video Surveillance	28 23 00	Complete Conduit
Electronic Personal Protection System	28 26 00	Conduit to Cable Tray, Partitioned Cable Tray
Fire Detection and Alarm	28 31 00	Complete Conduit

B. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
 - d. Waterproofing at Floor, Exterior Wall, and Roof Conduit
 Penetrations:

- Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS or directed by waterproofing manufacturer.
- C. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90-degree bends). Size boxes per TIA 569.
 - Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
 - 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
 - Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
 - 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

9. Provide 19 mm (3/4 inch) thick fire-retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets

where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.

- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.

27 05 33 - 10

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.
 - Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
 - e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - 1. Rigid steel, IMC or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.

- 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
- Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
- 5. Surface Metal Raceways: Use only where shown on drawings.
- 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- G. Expansion Joints:
 - Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
 - Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
 - 3. Install expansion and deflection couplings where shown.
- H. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.

27 05 33 - 12

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

- b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- Bolts supported only by plaster or gypsum wallboard are not acceptable.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

I. Box Installation:

- 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

27 05 33 - 13

- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - Install only in accessible spaces not subject to physical damage or corrosive influences.
 - Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes requirements for commissioning facility communications systems, related subsystems and related equipment. This Section supplements general requirements specified in Section 01 91 00, GENERAL COMMISSIONING REOUIREMENTS.
- B. Complete list of equipment and systems to be commissioned is specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Specification 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Commissioned Systems:
 - Commissioning of systems specified in Division 27 and 28 is part of project's construction process including documentation and proof of performance testing of these systems, as well as training of VA's Operation and Maintenance personnel in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Division 27, in cooperation with Government and Commissioning Agent.
 - 2. The facility exterior closure systems commissioning includes communications systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS and 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

1.2 RELATED WORK

- A. System tests: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Commissioning process requires review of selected submittals that pertain to systems to be commissioned: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Construction phase commissioning process and procedures including roles and responsibilities of commissioning team members and user training: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

1.3 COORDINATION

A. Commissioning Agent will provide a list of submittals that must be reviewed by Commissioning Agent simultaneously with engineering review; do not proceed with work of sections identified without engineering and Commissioning Agent's review completed. B. Commissioning of communications systems require inspection of individual elements of communications system construction throughout construction period. Coordinate with Commissioning Agent in accordance with Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and commissioning plan to schedule communications systems inspections as required to support the commissioning process.

1.4 CLOSEOUT SUBMITTALS

- A. Refer to Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for pre-functional checklists, equipment startup reports, and other commissioning documents.
- B. Pre-Functional Checklists:
 - Complete pre-functional checklists provided by commissioning agent to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing.
 - 2. Submit completed checklists to COR and to Commissioning Agent. Commissioning Agent can spot check a sample of completed checklists. If Commissioning Agent determines that information provided on the checklist is not accurate, Commissioning Agent then returns the marked-up checklist to Contractor for correction and resubmission.
 - 3. If Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, Commissioning Agent can select a broader sample of checklists for review.
 - 4. If Commissioning Agent determines that a significant number of broader sample of checklists is also inaccurate, all checklists for the type of equipment will be returned to Contractor for correction and resubmission.
- C. Submit training agendas and trainer resumes in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. Contractor's Tests:
- Scheduled tests required by other sections of Division 27 must be documented in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- Incorporate all testing into project schedule. Provide minimum seven calendar days' notice of testing for Commissioning Agent to witness selected Contractor tests at sole discretion of Commissioning Agent.
- 3. Complete tests prior to scheduling Systems Functional Performance Testing.
- B. Systems Functional Performance Testing:
 - Commissioning process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions.
 - 2. Commissioning Agent prepares detailed Systems Functional Performance Test procedures for review and acceptance by COR.
 - 3. Provide required labor, materials, and test equipment identified in test procedure to perform tests.
 - 4. Commissioning Agent must witness and document the testing.
 - Provide test reports to Commissioning Agent. Commissioning Agent will sign test reports to verify tests were performed.

3.2 TRAINING

- A. Training of Government's operation and maintenance personnel is required in cooperation with COR and Commissioning Agent.
- B. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning location, operation, and troubleshooting of installed systems.
- C. Schedule instruction in coordination with COR after submission and approval of formal training plans.

- - - E N D - - -

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

- A. Excavation and backfill for cables that are installed in conduit: Section 31 20 11, EARTHWORK (SHORT FORM).
- B. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - 2. Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.

- D. Power: Provide specific voltage, amperage, phases, and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:
 - Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
 - 2. Provide certified OEM sweep test tags from each cable reel to COR.
 - Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
 - Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
 - 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).

- Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
- 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:
 - 1) 18 AWG, minimum, Outside.
 - 2) 20 AWG, minimum, Inside.
 - d. Color Coding: Required, EIA industry standard.
 - e. Bend Radius: 10 times cable outside diameter.
 - f. Impedance: As required.
 - g. Shield Coverage: As required by OEM specification.
 - h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

- E. Distribution System Signal Wires and Cables:
 - Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
 - Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
 - 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems; provide not less than TIA Performance Category 6.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
 - Provide connectors for transmission lines, and signal extensions to maintain uninterrupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
 - Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wire wrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.

- 2) Data Cable Shields.
- 3) Equipment Racks.
- 4) Equipment Cabinets.
- 5) Conduits.
- 6) Ducts.
- 7) Cable Trays.
- 8) Power Panels.
- 9) Connector Panels.
- 10) Grounding Blocks.
- b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.
 - a. Voice (or Telephone):

- Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 6.
- IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 6 and the size and type of cable used.
- 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
- 4) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 100.
 - b) Number of Terminals per Row: Minimum 4.
 - c) Terminal Protector: Required for each used or unused terminal.
 - d) Insulation Splicing: Required between each row of terminals.
- b. Digital or High Speed Data:
 - Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
 - 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.

B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.
 - c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
 - d. Pull multiple cables into a single conduit together.
- B. Installation in Maintenance or Man holes:
 - 1. Install and support cables in maintenance holes on steel racks with porcelain or equal insulators.
 - 2. Train cables around maintenance hole walls, but do not bend to a radius less than six times overall cable diameter.
 - 3. Fireproofing:
 - a. Install fireproofing where low voltage cables are installed in same maintenance holes with high voltage cables; also cover low voltage cables with arc proof and fireproof tape.
 - b. Use tape of same type used for high voltage cables, and apply tape in a single layer, one-half lapped or as recommended by manufacturer. Install tape with coated side towards the cable and extend minimum 25 mm (1 inch) into each duct.
 - c. Secure tape in place by a random wrap of glass cloth tape.
- C. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.

- Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
- 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
- 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
- 5. Concealed splices are not allowed.
- Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
- 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
- Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
- Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.

- b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
- c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
- d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
- e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
- f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.
- D. AC Power:
 - Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
 - 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
 - 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
 - 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.

27 10 00 - 9 CONTROL, COMMUNICATION AND SIGNAL WIRING

- 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
- 3. Install labels retaining their markings after cleaning.
- 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.

B. Labeling:

- 1. Industry Standard: ANSI/TIA-606-B.
- Print lettering for voice and data circuits using laser printers ; handwritten labels are not acceptable.
- 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.
- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.

E. Test cables after installation and replace any defective cables.

- - - E N D - - -

SECTION 27 11 00 TELECOMMUNICATIONS ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies equipment cabinets, interface enclosures, relay racks, and associated hardware in service provider DEMARC, computer and telecommunications rooms.
- B. Telephone system is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Adhere to Seismic reference standards for systems connecting to or extending telephone system and cabling.

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION.
- B. Separate submittal into sections for each subsystem containing the following:
 - Pictorial layouts of each Telecommunications Room and Cross Connection Space (VCCS, and HCCS termination cabinets), each distribution cabinet layout, and TCO as each is expected to be installed and configured.
 - 2. Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.
- C. Environmental Requirements: Identify environmental specifications for housing system as initial and expanded system configurations.

- 1. Floor loading for batteries and cabinets.
- 2. Minimum floor space and ceiling height.
- 3. Minimum door size for equipment passage.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. Provide components of cabinet system (cabinet, thermal, cable and power management accessories) from a single manufacturer.
- B. Equipment Standards and Testing:
 - Equipment must be listed by a NRTL where a UL standard is in existence; active and passive equipment must conform with each UL standard in effect for equipment, on the submittal date.
 - Each item of electronic equipment must be labeled by a NRTL that warrants equipment has been tested in accordance with, and conforms to specified standards.
- C. Equipment Cabinets (Enclosures):
 - 1. Fully enclose and physically secure internally mounted and connected, active and passive equipment.
 - Types of Equipment Enclosures accepted for specific VA Spectrum Management, FMS and OI&T applications in CFM and Facility Projects:

CABINET	FUNCTION
Communications	FMS Special Communications Equipment
Server / Router	OI&T Data/LAN/WAN Equipment

- 3. Each cabinet to be:
 - a. Provided in each TR at a minimum.
 - b. Fabricated with minimum 1.59 mm (16 gauge) steel.
 - c. Provided with manufacturer's standard painted finish in a color accepted by COR with concurrence from FMS Service Chief.
 - d. Mounted on floor or wall.
 - e. Lockable; tubular locks keyed alike. Provide six keys to COR for each cabinet.
 - f. Compliant with facility's SMS card access system.
- Provide equipment mounting shelves; attach to front and rear mounting rails and allowing equipment to be secured to respective mounting rails.
- 5. Each enclosure to include:
 - a. Floor or wall mounting.

- b. Knock out holes for conduit connections or cable entrance.
- c. Front and rear locking doors; wall mounted cabinets require only front locking door.
- d. Power outlet strips.
- 6. Provide quiet ventilation fan with non-disposable locally cleanable air filter.
- 7. Size each cabinet in order to contain and maintain internal mounted equipment items.
- 8. Provide OEM's fully assembled unit.
- 9. Provide OEM assembled side-by-side enclosures in a single unit, at locations requiring more than two enclosures.
- 10. Provide minimum one cabinet with blank rack space, for additional system expansion equipment.
- 11. Bond to communications circulating grounding system.
- 12. Technical Characteristics:
 - a. External:
 - 1) Overall Height:
 - a) Communications/Server: Maximum 2,184 mm (86 inches).
 - b) Seismic: Maximum 1,905 mm (75 inches).
 - 2) Overall Depth:
 - a) Communications/Server: Maximum 914 mm (36 inches).
 - b) Seismic: Maximum 762 mm (30 inches).
 - 3) Overall Width All: Maximum 864 mm (34 inches).
 - b. Front Panel Openings:
 - 1) Width:
 - a) Communications: 482.6 mm (19 inches), per EIA.
 - b) Server: 483 mm (19 inches), per EIA/ECA 310.Seismic:483 mm (19 inches), per EIA/ECA 310.
 - 2) Height:
 - a) Communications/Server: Maximum 2,000 mm (78-3/4 inches or 45 Rack Units (RU)), per EIA/ECA 310.
 - b) Seismic: Maximum 1,689 mm (66-1/2 inches or 38 RUs, per EIA/ECA 310).
 - c. Heavy Duty Cycle: Maximum 544 kilograms (1,200 pounds) capacity.
 - d. Certification:
 - 1) NRTL (i.e. UL): For communications and server cabinets.

 Seismic: Provide cabinet OEM constructed to seismic design category.

13. Cabinet Internal Components:

- a. AC Power:
 - 1) Standard "Quad AC Box":
 - a) Power capacity: 20 Ampere, single phase, 120 VAC continuous duty.
 - b) Wire gauge: #12 AWG, solid copper, connected to room's internal AC Power Panel, or as directed by COR.
 - c) Number of AC power outlets: Minimum 4 receptacles.
 - d) Enclosure: Fully self-contained, metal 102 mm (4 inch) x 102 mm (4 inches) x 64 mm (2-1/2 inches) with cover
 - e) Connection: Minimum 25.4 mm (1 inch) conduit connected to room's AC Power Panel, or as directed by COR
 - f) Number of boxes: One.
 - g) Compliance: NRTL (i.e. UL); NPFA 70 (NEC).
- b. AC Outlet Strips:
 - 1) Power Capacity: 15 Ampere, single phase, 120 VAC continuous duty.
 - 2) Wire Gauge: Minimum #12 AWG, solid copper.
 - 3) Number of AC Power Outlets: Minimum 10 "U" grounded.
 - 4) Enclosure: Fully self-contained; typically metal.
 - 5) Connecting Wire: Minimum 2 m (6 feet) long, with three prong self-grounding AC plug connected to cabinet's internal AC "Quad" box.
 - 6) Number of Strips: 2.
 - 7) Certification: NRTL (i.e. UL).
- c. AC Power Line Surge Protector and Filter Construction:
 - Input Voltage Range: 120 VAC + 15 percent at 50/60 Hz, single phase.
 - 2) Power Service Capacity: 20 AMP, 120 VAC.
 - Voltage Output Regulation: +5.0 percent, instantaneous of input.
 - 4) Circuit Breaker: 15 AMP; may be self-contained.
 - 5) AC Outlets: Minimum four duplex grounded NEMA 5-20R.
 - 6) Response Time: 5.0 nanosecond.

- 7) Suppression: Isolate and filter any noise, surge spikes
 - a) Surge: Minimum 20,000 AMP.
 - b) Noise:
 - 1) Common: -40 dB.
 - 2) Differential: -45 dB.
- 8) Clamping Voltage: Minimum 300 V.
- 9) Enclosure: One; self-contained.
- Mounting: Internal to cabinet floor or on internal mounting rail shelf, allowing two plugs from two plug strips.
- 11) AC Power Cord: Required; minimum 1,628 mm (6 feet), three wire (green ground); minimum #14 AWG stranded.
- 12) Compliance: NRTL (i.e. UL60950-1).
- d. Uninterruptible Power Supply (UPS): Provide each cabinet with an internal UPS which may be combined with surge protector and filter if system's 50 percent expansion requirement is met. Provide at least one hour continuous full load two hours if working with a critical uninterruptible system primary AC Power, with a 50 percent 1.0 hour reserve capacity, in the event of facility primary or emergency AC power failure.
 - 1) UPS to include:
 - a) On-Off Switch: This function is required to be a part of system's electronic supervision requirements.
 - b) First/Fast Charge Unit: Must provide clean predicable charge voltage/current. Function is required to be a part of system's electronic supervision requirements.
 - c) Over Voltage/Current Protect: Cannot short circuit AC power line at any time. This function is required to be a part of system's electronic supervision requirements.
 - d) Trickle Charge Unit: Must be capable of maintaining a suitable internal battery charge without damaging batteries.
 - e) Mounting: Provide per OEM's direction.
 - f) Proper Ventilation: Do not override cabinets' ventilation system.
 - g) Power Change from AC Input: Accomplish change without interruption to communications link or subsystem being

protected. Generate visual and aural alarms in electrical supervision system, local and remote, to annunciating panels via direct connection for trouble indication.

- Specific requirements for current and surge protection to include:
 - a) Voltage Protection: Threshold, line to neutral, starts at maximum 200 Volts peak. Transient voltage cannot exceed 330 Volts peak. Furnish documentation on peak clamping Voltage as a function of transient waveform.
 - b) Peak Power Dissipation: Minimum 35 Joules per phase, as measured for 1.0 millisecond at sub branch panels, 100 Joules per phase at branch panels and 300 Joules per phase at service entrance panels. Typically, power dissipation is 12,000 Watts (W) for 1.0 mS (or 12 Joules). Provide explanation of how ratings were measured or empirically derived.
 - c) Surge Protector (may be combined with On-Off switch of UPS): Must not short circuit AC power line at any time.
 - 1) Components must be minimum silicon semi-conductors.
 - Secondary stages, if used, may include other types of rugged devices.
 - Indicators: Provide visual device indicating surge suppression component is functioning.
 - Electrical Supervision: Required; must be audile and visual, local and remote to annunciating panels via direct connection for trouble indication.
 - d) Provide current and surge protection on ancillary equipment.
 - e) Equip each cabinet with the following:
 - Equipment Mounting Rails (Front & Rear): Fully adjustable internal equipment mounting rails allowing front or rear equipment mounting with pre-drilled EIA/ECA 310-E Standard tapped holes. Support entire equipment by supplementary support in addition to face mounting screws on rails.

- Cabinet Ground: Stainless steel adjustable, lug connected to cabinet's main structure providing an internal cabinet ground for all installed equipment properly bolted to rail and with ground wire connected.
- 3) Grounding Terminals: A separate mounting hole on equipment mounting rail, with stainless steel connecting bolt bonded by minimum #10 AWG copper wire to cabinet's internal grounding lug.
- 14. Ground Interconnection: Bond cabinet's common grounding lug to room's communications circulating ground busbar with a minimum #4 AWG stranded copper wire.
- 15. Blank Panels: Provide at every unused rack space.
 - a. Match cabinet color.
 - b. Provide panels of 3 mm (1/8 inch) thick aluminum with vertical dimensions in increments of one rack unit (RMU) or 45 mm (1-3/4 inch) with mounting holes spaced to correspond to EIA/ECA 310-E Standard 483 mm (19 inch) rack dimensions.
 - c. Fill large unused openings with single standard large panel instead of numerous types.
 - d. Leave one blank rack space (RMU), covered with a blank panel, between each item of equipment, for minimum internal air flow.
 - e. Leave 356 mm (14 inches)(8.0 RMU) open space, covered with blank cover panel, for additional expansion equipment.
 - f. Wire Management: System that connects each item of installed equipment to room wire management system.
 - g. Knock-out Holes: Provide for cable entrance/exits via conduits, cable duct/trays.
- 16. Trouble Annunciator Panel: Provide trouble annunciator panel in HE cabinet locations and as shown on drawings compatible with electrical and electronic supervising signals to continuously monitor operating condition for system HE equipment, remote equipment, and interconnecting trunks.
 - a. When system's supervising system detects malfunctioning equipment or trunk line, system must generate an audible and visual signal; provide spare panel.
 - b. Technical Characteristics:

- Silence Button or Switch: Provide to silence audible signal. Visual signal will continue until supervisory circuit indicating a fault is corrected.
- Visual Enunciators: Visually show system equipment and trunkline operating conditions via its supervisory circuit indicating fault condition.
- 3) Connect each alarm function to report to PCS Console SMS.
- D. Wall Mounted Distribution or System Interface Cabinet:
 - Construct of minimum 1.59 mm (16 gauge) cold rolled steel, with top, side and bottom panels.
 - Provide double-hinged front door and main cabinet body allowing access to all internal equipment and wiring; mount to solid walls or internal studs.
 - 3. Provide baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using FMS Chief or COR.
 - 4. Provide integral and adjustable EIA/ECA 310 standard predrilled rack mounting rails to allow front panel equipment mounting and access.
 - 5. After equipment, doors and panels are installed, snap-in-place chrome trim strip covers all front panel screw fasteners.
 - Provide full-length vertical piano hinge to allow entire front portion of cabinet to "swing out" from wall for access to installed equipment, wires and cable; maintain minimum OSHA Safety clearances and NFPA operational functions.
 - 7. Provide an OEM's fully assembled unit enclosure.
 - Equip these cabinets same as equipment cabinets, except mount UPS on floor below cabinet with AC power connection in conduit to AC service panel.
 - 9. Technical Characteristics:
 - a. Overall Height: Maximum 1,218 mm (48 inches).
 - b. Overall Depth: Maximum 558 mm (22 inches).
 - c. Overall Width: Maximum 610 mm (24 inches).
 - d. Front Panel Horizontal: Maximum width 483 mm (19 inches).
 - e. Capacity: Maximum 180 kilograms (400 pounds).
 - f. Lockable:
 - 1) Tubular lock with 7-pin security.
 - 2) Key cabinets alike.

- E. Stand Alone Open Equipment Rack:
 - Construct of minimum 1.59 mm (16 gauge) cold rolled steel with manufacturer's standard paint finish, in a color to be selected by COR with concurrence from facility's FMS Service Chief.
 - 2. Floor-mount as directed by COR with concurrence from facility's FMS Service Chief.
 - Equip rack same as equipment cabinet, except mount UPS with additional support for weight and AC power connection in conduit to AC service panel.
 - 4. Provide an OEM fully assembled unit.
 - 5. Technical Characteristics:
 - a. Overall Height: Maximum 2,180 mm (85-7/8 inches).
 - b. Overall Width: Maximum 535 mm (21-1/16 inches).
 - c. Front Panel Opening: 483 mm (19 inches), EIA/ECA 310 horizontal width.
 - d. Hole Spacing: Per EIA/ECA 310.
 - e. Load Capacity: Maximum 680.4 kg (1,500 lbs).
 - f. Certifications:
 - 1) EIA/ECA: 310-E.
 - 2) NRTL (i.e. UL): OEM specific.
- F. Wire Management Equipment:
 - Provide an orderly horizontal and vertical interface between outside and inside wires and cables, distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide an uniform connection media for system fire-retardant wires and cables and other subsystems.
 - 2. Interface to each cable tray, duct, wireway, or conduit used in the system.
 - 3. Interconnection or distribution wires and cables must enter system at top (or from a wireway in the floor) via overhead protection system and be uniformly routed down both sides at same time, of the frames side protection system, then laterally for termination on rear of each respective terminating assembly.
 - Custom configure to meet 30 percent fill system design and user needs.
- G. Vertical Cable Managers:

- Use same make, style and size of vertical cable manager on rack/frame or in between racks/frames when more than one cable manager is used on a rack/frame or group of racks/frames.
- 2. Match color and cover style of racks/frames and cable managers.
- H. Horizontal Cable Managers:
 - Use same make and style of cable manager on rack/frame or racks/frames, when more than one horizontal cable manager is used on a rack/frame or group of racks/frames.
 - 2. Match color of racks/frames and cable managers.
- Provide installation hardware when enclosures or racks are attached to structural floor.
- J. Provide noise filters and surge protectors for each equipment interface cabinet, switch equipment cabinet, control console, and local and remote active equipment locations to ensure protection from input primary AC power surges so as a consequence noise glitches are not induced into low voltage data circuits.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate cabinet installation such that doors fully close and lock, with active and passive equipment installed and connected.
- B. Verify equipment dimensions and brackets allow mounting with cabinet doors closed. Front door or rear door of any cabinet that does not close and lock may result in immediate cancellation of inspections or tests.

3.2 INSTALLATION

- A. Equipment Cabinets:
 - Install cabinets in a manner that complies with OEM instructions, requirements of this specification, and in a manner which does not constitute a safety hazard.
- B. Grounding:
 - Bond equipment, including identified Government furnished equipment, to ground so total ground resistance measures maximum 0.1 Ohm.
 - a. Install lightning arrestors and grounding in accordance with NFPA.

- b. Install gas protection devices at nearest point of entrance in buildings where protection is required and on same circuits as MDF in telephone switch room.
- c. Do not use AC neutral, including in power panel or receptacle outlet, for system control, subcarrier or audio reference ground.
- d. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted.
- Connect each equipment grounding terminal to a separate mounting hole on equipment mounting rail, to right as one looks at it from rear, with a minimum #12 AWG stranded copper wire with protective green jacket.
- 3. Extend common ground bus of minimum #10 AWG solid copper wire throughout each equipment cabinet and bond to TGB. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground buses together.
- 4. Bond equipment to cabinet bus with copper braid equivalent to #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.
- 5. Bond cable shields to cabinet ground bus with minimum #12 AWG stranded copper wire at only one end of cable run. Insulate cable shields from each other, faceplates, equipment racks, consoles, enclosures or cabinets, except at system common ground point. Bond coaxial and audio cables only at source; in all cases, keep cable shield ground connections to a minimum.
- C. Equipment Assembly:
 - 1. Cabinets:
 - a. Install and adjust cabinet/frame accessories to position, including thermal management accessories, vertical cable managers, vertical power managers and equipment-mounting rails, using manufacturer's installation instructions prior to baying or placing cabinet for attachment to building and before installing any rack-mount equipment into cabinet. Shelves, horizontal cable managers and filler panels (rack-mount accessories), if used, may be installed after cabinet is placed.

- b. When used in a multi-cabinet bay, attach cabinets side-by-side using baying kits according to manufacturer's instructions.
- c. Attach overhead ladder rack or cable tray to ceiling or top of cabinet. Maintain minimum 75 mm (3 inches) clearance between top of cabinet and bottom of ladder rack/cable tray. Position ladder rack/cable tray so that it does not interfere with hot air exhaust through cabinet's top panel. Use radius drops where cable enters or exits ladder rack/cable tray.
- d. In seismic areas, install additional bracing as required by building codes and recommendations of a licensed structural engineer.
- e. Install ladder rack with side stringers facing rack or cabinet so that ladder forms an inverted U-shape and so that welds between stringers (sides) and cross members (middle) face away from cables.
- f. Secure ladder rack to tops of equipment racks or cabinets using manufacturer's recommended supports and appropriate hardware.
- g. Attach bonding conductor sized per TIA-607-B between telecommunications grounding busbar and cabinet. Attach bonding conductor to cabinet using a ground terminal block according to manufacturer's installation instructions.
- h. Provide bonding conductor and other hardware required to make connections between cabinet and telecommunications grounding busbar.
- i. Install rack mounted equipment normally requiring adjustment or observation so operational adjustments can be conveniently made.
- j. Mount heavy equipment with rack slides or rails to allow servicing from front of enclosure. Provide support in addition to front panel mounting screws for heavy equipment.
- k. Provide with cable slack to permit servicing by removal of installed equipment from front of enclosure.
- Install color-matched blank panel spacer 44 mm (1.75 inches) high between each piece of active and passive equipment to ensure adequate air circulation for efficient equipment cooling and air ventilation.

- m. Provide quiet fans and non-disposable air filters at each console or cabinet.
- n. Install enclosures and racks plumb and square, permanently attached to building structure and held in place.
- o. Provide 381 mm (15 inches) of front vertical space opening for additional equipment.
- p. Install equipment located indoors in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
- q. Cables must enter equipment racks or enclosures in such a manner to allow doors or access panels to open and close without disturbing or damaging cables.
- r. Mount distribution hardware in a manner that allows access to connections for testing and provides room for doors or access panels to open and close without disturbing the cables.
- 2. Racks:
 - a. Assemble racks according to manufacturer's instructions.
 - b. Verify that equipment mounting rails are sized properly for rackmount equipment before attaching rack to floor.
 - c. Attach assembled racks to floor in four places using appropriate floor mounting anchors. When placed over a raised floor, threaded rods should pass through raised floor tile and be secured in structural floor below.
 - d. Bond racks to telecommunications grounding busbar using appropriate hardware provided by contractor.
 - e. In seismic areas, install additional bracing as required by building codes and recommendations of a licensed structural engineer.
 - f. Ladder rack may be attached to top of rack to deliver cables to rack. Do not drill rack to attach; use appropriate hardware from rack manufacturer.
 - g. Provide radius drops to guide cable where cable exits or enters side of overhead ladder rack to access a rack, frame, cabinet or wall-mounted rack, cabinet or termination field.

- h. Evenly distribute equipment load on rack. Place large and heavy equipment towards bottom of rack. Secure equipment to rack with equipment mounting screws.
- 3. Vertical Cable Managers:
 - Provide vertical managers so number of cables in each manager does not exceed OEM fill capacity.
 - b. Attach vertical cable managers to side of rack/frame using manufacturer's installation instructions and hardware.
 - c. Attach vertical cable manager to both racks/frames when a single vertical cable manager is used between two racks/frames.
 - d. Dress cables through openings in between T-shaped guides on manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
 - e. Attach doors to cable manager in closed position after cabling is complete.
- 4. Horizontal Cable Managers:
 - Attach horizontal cable managers to rack/frame with minimum four screws according to manufacturer's installation instructions.
 Center each cable manager within allocated rack-mount space (RMU).
 - b. Provide horizontal managers located so number of cables each manager supports is less than cable manager's cable fill capacity.
 - c. Dress cables through openings in between T-shaped guides on cable manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
 - d. Attach covers to cable manager in closed position after cabling is complete.
- D. Labeling: Permanently label each enclosure in accordance with TIA-606-B using laser printers; handwritten labels are not acceptable.
 - 1. Equipment: Label system equipment with contrasting plastic laminate or bakelite material on face of unit corresponding to its source.
 - 2. Conduit, Cable Duct, and/or Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 spray painted stenciling a minimum of 3 m (10 feet), identifying system.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Center, here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- F. High Definition (HDTV) Master Antenna Television (MATV) system and associated equipment: Section 27 41 31, MASTER ANTENNA TELEVISION EQUIPMENT AND SYSTEMS.
- G. Emergency Service Public Address System (PAS) and associated equipment: Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each telecommunications room, showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - 1. Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract

maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.

- Pre-acceptance Certification: Submit in accordance with test procedures.
- Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.

- Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
- 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.
- C. System Performance: Provide complete system to meet or exceed TIA Category 6 requirements.
- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Provide separate cable distribution system for emergency, safety and protection systems (i.e. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems; etc.)
 - 3. Contact SMCS 0050P2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, analog and video telecommunications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic or coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.

- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, Fiber optic, Coaxial and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
 - c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
 - 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP and STP, fiber optic, coaxial and analog backbone cables, terminate UTP and STP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels, .
 - b. Provide 24 port fiber optic modular patch panels with "LC" couplers dedicated for voice, data and FMS applications.
 - c. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
 - d. In TR's, which are only served by a UTP and STP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.

- 3. Backbone Copper Cables:
 - a. Riser Cable:
 - Provide communication riser cables listed in NEC Table 800, 154(a) for the purpose and suited for electrical connection to a communication network.
 - 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication (analog RF coaxial cable is not to be provided in riser systems) riser cables with a thermoplastic outer jacket.
 - 3) Label and test complete riser cabling system.
- 4. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6 requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 500 MHz.
 - c. Provide four pair 0.326 mm2 (22 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO).
- B. Telecommunication Room (TR):
 - Terminate horizontal, copper, fiber optic, coaxial and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.
 - Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- C. Coaxial and Analog Cables: Bond equipment to ground per TIA standards, such that all grounding systems comply with all applicable National, Regional, and Local Building and Electrical codes.
 - Provide current arrester for each copper or coaxial cable that enters from outside of a building regardless if cable is installed underground or aerial.

- 2. Provide a gas surge protector/module and bond to earth ground.
- D. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1. Provide Insulation Displacement Connection (IDC) hardware.
 - Provide the following for each Category 6 cross-connection wires, RJ-45 patch cord connector to RJ-45 patch cord connector.
 - a. Provide terminations to be accessible without need for disassembly of IDC wafer. Provide IDC wafers removable from their mounts to facilitate testing on either side of connector.
 - b. Provide removable designation strips or labels to allow for inspection of terminations.
 - c. Provide cable management system as a part of IDC.
 - Provide IDC connectors capable of re-terminations, without damage, a minimum of 200 IDC insertions or withdrawals on either side of connector panel.
 - Install using only non-impact terminating tool having both a tactile and an audible feedback to indicate proper termination.
 - 5. Provide inputs from FTS, Local Voice (Telephone) System, or diverse routed voice distribution systems on left side of IDC (110A blocks with RJ45 connections are acceptable alternates to IDC) of MCCS.
 - Provide system outputs from MCCS to voice backbone cable distribution system on the right side of same IDC (or 110A blocks) of MCCS.
 - Do not split pairs within cables between different jacks or connections.
 - 8. Provide UTP cross connect wire to connect each pair of terminals plus an additional 50 percent spare.
- E. Data Cross-Connection Subsystems:
 - Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations and system ground with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
- a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
- b. Provide backbone cable connections on bottom row of jacks of same patch panel.
- c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- d.
- F. Horizontal Cabling (HC):
 - Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum two data RJ45 jacks mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.
 - 2. Provide RJ-45 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections.
 - 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit voice (telephone) multi-pin jack, data multi- pin jacks and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications. Install stainless steel face plate, for prefabricated bedside patient unit installations.
- B. Outlet Connection Cables:
 - 1. Data:

- a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
- b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Data grade Category 6.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.
- C. System Connectors:
 - Modular (RJ-45): Provide high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5) Leakage: Maximum 100 μA_{\star}
 - 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs.
 - d) Durability: Minimum 200 insertions/withdrawals.
- D. Conduit and Signal Ducts:
 - 1. Conduit:
 - Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.

- d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
- e. Maximum 40 percent conduit fill for cable installation.
- Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
 - 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - Print lettering of labels with laser printers; handwritten labels are not acceptable.

- 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
- Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

- A. Interim Inspection:
 - Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
 - 2. Check each item of installed equipment to ensure appropriate NRTL label.
 - Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
 - Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
 - 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
 - 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
 - 7. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
 - 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.

- Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
- Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Acceptance Test:
 - After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
 - 2. Test only in presence of a COR.
 - Test utilizing approved test equipment to certify proof of performance.
 - 4. Verify that total system meets the requirements of this section.
 - 5. Include expected duration of test time, with notification of the acceptance test.

D. Verification Tests:

- Test UTP and STP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
- 2. Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.
- 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-7 using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.
- E. Performance Testing:
 - Perform Category 6 tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.

F. Total System Acceptance Test: Perform verification tests for UTP, STP copper cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one-year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
 - Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - B. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
 - 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 27 41 31 MASTER ANTENNA TELEVISION EQUIPMENT AND SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies a complete and operating National Television Standards Committee (NTSC) High Definition (HDTV) Master Antenna Television (MATV) system, hardware and associated equipment for VA Medical Center, here-in-after referred to as the "facility".
- B. Provide complete system including RF amplification and distribution systems splitters, taps, cross-connection blocks including panels and associated hardware, telecommunication outlets (TCO), coaxial distribution wires, power supplies, cables, connectors, "patch" cables and internal communications system ground, required for reception and distribution of cable analog signals.
 - 1. RF Service.
 - 2. Analog Video Service.
 - 3. Analog Audio Service.

1.2 RELATED WORK

- A. System Tests: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Submittals (including samples, test reports, certificates, and manufacturers' literature): Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Sealant and caulking materials and their application around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- D. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- E. Wiring devices: Section 26 27 26, WIRING DEVICES.
- F. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

- H. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- I. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- J. Voice and data cable distribution system and associated equipment: Section 27 15 00, COMMUNICATIONS STRUCTURED CABLING.
- K. Nurse-Call and Code Blue Communication Systems and associated equipment: Section 27 52 23, NURSE CALL AND CODE BLUE SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit PDF electronic copies for each of the following:
 - Provide site drawing showing system grounding electrode connections and routing of grounding electrode conductors.
 - Pictorial layout drawing of each antenna, mount, lead-in and lightning ground connections, antenna head end equipment room, Demarc Room, TR Equipment Room show termination cabinets, each distribution cabinet and rack, user TCO locations and wire management practices.
 - Engineering drawings of system, showing calculated signal levels at each input and output distribution point, used to determine proposed TCO values.
 - Calculated system layout drawing indicating cable types, amplifiers, taps, splitters, lengths of cable in "Tree" Topology .
 - 5. Anticipated signal level at each coaxial cable TCO jack.
 - 6. RF Cabling Requirements/Column Explanation:

Column	Explanation
FLOOR	Identify floor by number (i.e. 1st, 2nd, etc.)
TR ROOM NUMBER	Identify room, by number, from which cabling will be installed
TO FLOOR TR	Identify building, by number or location, to which cabling will be installed
NUMBER OF CONDUCTORS	Identify the number of conductors in each run of RF cable
INSTALLATION METHOD	Identify the method of installation
NOTES	Identify note numbers for special features

 $$27\ 41\ 31\ -\ 2$$ Master antenna television equipment and systems

Column	Explanation
	or equipment
BUILDING MTR	Identify building by number or title

7. Analog Video (and Audio) Cabling Requirements/Column Explanation:

Column	Explanation
FROM BUILDING	Identify building, by number or location, from which cabling will be installed
TR ROOM NUMBER	Identify the room, by number, from which cabling will be installed
TO BUILDING IMR	Identifies building, by number or title, to which cabling will be installed
TR ROOM NUMBER	Identify the room, by number, to which cabling will be installed
NUMBER OF CONDUCTORS	Identify the number of conductors in each run of cable
INSTALLATION METHOD	Identify method of installation
NOTES	Identify a note number for special features or equipment
BUILDING MTR	Identifies the building by number or title

- List of test equipment required by Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit certification from OEM that MATV installation supervisor and maintenance provider are authorized representatives of OEM. Include each individual's legal name, address and OEM credentials in the certification that includes the most recent approval date.
 - 2. Submit pre-acceptance certification in accordance with test procedures.
- C. Needs Assessment Report: Provide a summary report of the needs assessment meeting conducted with nursing manager of each unit, as required by this section.
- D. Provide sample copy of report format to be used for trouble calls; obtain COR approval of sample report before beginning total system acceptance test.

1.4 WARRANTY

A. In addition to compliance with FAR clause 52.246-21 provide OEM warranty documents certifying each item of equipment conforms to specifications and OEM installation recommendations.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Design Criteria:
 - Coordinate features to provide components forming an integrated system. Match components and interconnections for optimum performance of specified functions.
 - Provide system with capacity to increase quantity of TCOs by 40 percent above indicated without adding any internal or external components or main trunk cable conductors.
 - Distribute HDTV television signal to MATV TCOs to permit simple connection of A/53 ATSC Digital Television Standard Parts 1-6 HDTV receivers.
 - 4. Deliver at MATV TCOs Analog television channel signals.
 - 5. Provide reception quality at each MATV TCO exceeding that received in area with individual antennas. Deliver minimum +6.0 dBmv (2,000 microvolts across 75 Ohms) and maximum of +20 dBmv (20,000 microvolts) for each HDTV channel at each MATV TCO.
 - 6. Only employ interfacing methods accepted by OEM and VACO'S AHJ (SMCS 0050P2H3). Selected interface or interconnecting methods require physical and mechanical connections, matching signal, voltage, processing levels and impedance that provides described signal levels and quality.
 - 7. Provide passive distribution equipment to meet or exceed -80 dB radiation shielding specifications .
 - Terminate trunk, branch, and interconnecting cables and unused equipment ports or taps with terminating resistors designed for RF, audio, and digital cable systems without adapters.
 - Utilize microprocessor components for signaling and programming circuits and functions. Use non-volatile system program memory, or protected from erasure during power outages for a minimum of 24 hours.

- 10. Provide UPS for system (including each distribution cabinet/point) to allow normal operation and function in event of an AC power failure or during input power fluctuations for a minimum of 30 minutes.
- 11. Use coaxial cable connections recommended by cable OEM and approved by equipment OEM for coaxial cable distribution points and RF transmission lines.
 - a. Utilize barrier terminal screw type connectors, minimum at base band cable systems.
 - b. Crimp type connectors installed with a ratchet type installation tool are acceptable alternative if cable dress, pairs, shielding, grounding, connections and labeling are same as barrier terminal strip connectors.
 - c. Tape of any type, wire nuts or solder type connections are not permitted.
- 12. Utilizing LAN/WAN cable systems for control, management and distribution of equipment and distribution of MATV signals is not permitted. Connect system ensuring NFPA Critical Care and Life Safety Circuit separation guidelines are satisfied. Connections to Telephone and LAN/WAN systems are not permitted.
- 13. Telephone cable to distribute MATV signals, carrying system or subsystem AC or DC voltage is not permitted.
- 14. Audio Level Processing: Provide control location equipment to ensure system produces audio channel capacity identified on drawings at each TV/speaker.
- 15. Provide weather-resistant equipment listed by National Recognized Testing Laboratory (NRTL) for installation outdoors or in damp locations.
- B. Performance Criteria:
 - 1. RF Service:
 - a. "Off air" RF High Definition (HDTV) or Analog Television service (considered to be at RF (below 900 mHz in frequency bandwidth). RF television systems require backbone coaxial cable, from antenna farm to antenna head end room, and to each TR and distribution coaxial cable to each HDTV outlet location.
 - b. Isolation (outlet-outlet): 14 dB.

27 41 31 - 5

- c. Impedance: 75 Ohms, unbalanced.
- d. Signal Level: 10 dBmV, +/- 5.0 dBmV.
- e. Bandwidth: Minimum 6.0 MHz per channel fully loaded.
- 2. Analog Video Service: Baseband below 100 MHz in frequency bandwidth.
 - a. Isolation (outlet-outlet): Minimum 24 dB.
 - b. Impedance: 75 Ohm, unbalanced.
 - c. Output Level: 1.0 V peak to peak (P-P), for 87.5 percent depth of Modulation (Mod).
 - d. Diff Gain: ±1.0 dB at 87.5 percent Mod.
 - e. Diff Phase: ±1.5 at 87.5 percent Mod.
 - f. Signal to Noise (S/N) ratio: Minimum 44 dB.
 - g. Hum Modulation: -55 dB.
 - h. Return Loss: Maximum -14 dB or 1.5 Voltage Standing Wave Ratio
 (VSWR).
 - i. Bandwidth: Minimum 6.0 MHz per channel, fully loaded.
- 3. Analog Audio Service: is baseband below 10 MHz in frequency bandwidth. Analog audio circuits require separate audio connectors and video connectors even though both are considered baseband signals. Each TCO has multiple 600 (or 120) Ohm BAL line pairs.
 - a. Impedance: 600 Ohm, BAL
 - b. Input Level: Minimum 59 mV RMS.
 - c. Output Level: 0 dBm.
 - d. S/N ratio: Minimum 55 dB.
 - e. Hum Modulation: Minimum -50 dB.
 - f. Return Loss: Maximum -14 dB (or 1.5 VSWR).
 - g. Isolation (outlet-outlet): Minimum 24 dB.
 - h. Frequency Bandwidth: Minimum 100 Hz 10 KHz.
- C. Provide accessories and miscellaneous equipment for a complete and operating HDTV system.
- D. Equipment:
 - 1. Modular type rated for continuous duty.
 - 2. Provide NRTL Listed equipment by OEM that is a commercial business enterprise manufacturing items of equipment and which:
 - a. Maintains replacement parts for equipment in stock,
 - b. Maintains engineering drawings, specifications, and operating manuals for equipment.

27 41 31 - 6

- c. Published and distributed descriptive literature and equipment specifications on equipment submitted 30 days prior to Invitation for Bid.
- E. For protection from input power surges and to ensure noise is not induced into circuits, provide noise filters and surge protectors for each equipment interface, distribution and head end cabinet, control console, and local and remote amplifier locations. Provide lightning/surge suppression of the antenna farm and ground per NEC article 810.
- F. Provide stainless steel, or AHJ (SMCS 0050P02H3) accepted faceplates.

a.

2.2 DISTRIBUTION EQUIPMENT

- A. Distribution Devices:
 - 1. Distribution Amplifiers:
 - a. Description: Broadband, very low distortion, cable television system quality, HDTV distribution amplifier.
 - b. Characteristics:
 - 1) Frequency Range: 49MHz to 1,000MHz.
 - 2) Channel Loading: 150.
 - 3) Flatness: +/-0.75dB.
 - 4) Gain: 32dB.
 - 5) Output Level: +40dBmV.
 - 6) Gain Control Range: 10dB.
 - 7) Slope Control Range: 8dB.
 - 8) Plug in Equalizers: As needed.
 - 9) Attenuator Options: As needed.
 - 10) Programming: Minimum 35 HDTV channels.
 - 11) Gain of the Preamplifier: 32dB, with an output level of 48dBmV for each HDTV channel processed.
 - 12) Amplifier Module: Hybrid push-pull.
 - 13) Gain and Slope Control Ranges: 8dB and 9dB, respectively.
- B. Cable:
 - Provide RG-6, RG-11, or appropriate hardline minimum 13 mm (1/2 inch) coaxial cable to achieve specified signal level.
 - a. Provide RG-11 or 13 mm (1/2 inch) hardline coaxial cable for runs over 45.72 m (150 feet) in length.

27 41 31 - 7

- b. Provide plenum riser rated coaxial cable with a nominal characteristic impedance of 75 Ohms throughout entire frequency spectrum utilized in this system.
- 2. Sweep-test and return-loss test each reel of cable, over frequency range 50 MHz to 750 MHz, at manufacturer prior to shipping.
- 3. Trunk Cable:
 - a. Description: 13 mm (1/2 inch), semi-rigid coax, riser rated.
 - b. Maximum Attenuation:
 - 1) 2.92 dB/100ft at 700 MHz.
 - 2) 3.78 dB/100ft at 1000 MHz.
 - 3) Impedance: 75 Ohm.
- 4. RG6 Cable:
 - a. Description: RG6 double shielded cable CMR or CMP Rated
 - b. Attenuation:
 - 1) 1.48 dB/100ft at 50 MHz.
 - 2) 7.45 dB/100ft at 1000 MHz.
 - 3) Impedance: 75 Ohm.
- 5. General Purpose Analog RF:
 - a. Size:
 - 1) Minimum coaxial cable size RG-6 type (or equal).
 - 2) Increase size (i.e. RG-ll, 13 mm (1/2 inch), 19 mm (3/4 inch), etc.) to meet system design signal level.
 - 3) Use for baseband signals as approved by OEM.
 - b. Technical Characteristics:
 - 1) Impedance: 75 Ohm, unbalanced.
 - Center Conductor: 20 AWG, solid or stranded copper, or copper plated steel or aluminum.
 - 3) Dielectric: Cellular polyethylene.
 - 4) Shield Coverage: 95 percent, copper braid.
 - 5) Connector Type: BNC or UHF.
 - 6) Attenuation:
 - a) Frequency 10 kHz: Maximum 0.20 dB/30.5 M (100 ft.)
 - b) Frequency 100 kHz: Maximum 0.22 dB/30.5 M (100 ft.)
 - c) Frequency 1 MHz: Maximum 0.25 dB/30.5 M (100 ft.)
 - d) Frequency 4.5 MHz: Maximum 0.85 dB/30.5 M (100 ft.)
 - e) Frequency 10 MHz: Maximum 1.40 dB/30.5 M (100 ft.)

27 41 31 - 8

f) Frequency 100 MHz: Maximum 5.00 dB/30.5 M (100 ft.)

- 6. RG11 Cable:
 - a. Description: RG11 cable CMR or CMP Rated.
 - b. Attenuation:
 - 1) 0.90 dB/100ft at 50 MHz.
 - 2) 5.04 dB/100ft at 1000 MHz.
 - 3) Impedance: 75 Ohm.
- C. Line Splitters:
 - Provide low-radiation line splitters with a flat frequency response from 50 MHz to 1,000 MHhz. Provide units of a hybrid design with a 75-ohm match on input and outputs and a VSWR no greater than 1.4:1.
 - Provide two-way line splitters with signal loss of not more than 3.5 dB at each output.
 - Provide four-way line splitters with signal loss of not more than
 7.2 dB at each output.
 - 4. Terminate unused splitter outputs with 75-Ohm terminations.
- D. RF signal splitters:
 - 1. Frequency Range: 5MHz to 900MHz.
 - 2. Outputs: 2, 3, 4 and 8.
 - 3. Splitter Loss: less than 12 dB.
 - 4. RFI Shielding: 120 dB.
- E. HDTV Outlets:
 - Provide HDTV outlets at each location shown. Install outlets in 10.2 cm (4 inch) square, 5.1 cm (2 inch) deep minimum flush electrical boxes.
 - 2. Incorporate provisions in the network to prevent 60 Hz AC or DC feedback into distribution lines.
 - 3. Outlets:
 - a. Frequency Range: 10 MHz to 900 MHz, minimum
 - b. Insertion Loss: less than 1.0 dB at any frequency within designated frequency range for a 17 dB isolation network.
 - c. Back-matched from 10 to 1,000 MHz.
 - d. One F-type connector on front and two F-type connectors on rear.
 - e. Minimum Isolation Value between any Two Outlets: 24 dB.
- F. Taps:
 - 1. Description: Directional coupler type taps.

- 2. Rated for installation in TR or accessible area of cable tray.
- 3. Frequency Range: 5 MHz to 900 MHz.
- 4. Outputs: 2, 4 and 8.
- G. Wall plates and Bulkhead Connectors:
 - Provide wall plates for termination of CATV signals at television sets.
 - 2. Impedance: 75 Ohms.
 - 3. Frequency Band: SUB/VHF/CATV-HDTV/UHF.
- H. Combiners, Traps, and Filters; and Passive Devices such as Splitters, Couplers, "Patch" Cables, or Devices:
 - Use coaxial cable connections recommended by cable OEM and approved by system OEM for coaxial cable distribution points and RF transmission lines.
 - a. Utilize barrier terminal screw type connectors minimum at baseband cable systems.
 - b. Crimp type connectors installed with a ratchet type installation tool are an acceptable alternative if cable dress, pairs, shielding, grounding, connections and labeling are provided same as barrier terminal strip connectors.
 - c. Tape of any type, wire nuts, or solder type connections are not permitted.
 - 2. Analog RF terminating panels:
 - a. "Patch" Type:
 - 1) 48.26 cm (19 inches) EIA/ECA 310-E rack dimensions.
 - 2) Minimum 12 double female "F" connector rows.
 - Expansion capability of a maximum of 24 double row "F" slots that can be field activated.
 - In a lockable cabinet or enclosure. Stacking of "patch" panels is permitted if installation guidelines are met.
 - 3. "Patch" Cords:
 - a. Analog RF:
 - Provide a connection cable for each TCO analog RF connector in system with 10 percent spares. Provide analog RF connection cable of length to connect analog RF instrument to TCO analog RF jack.
 - 2) Technical Characteristics:

27 41 31 - 10

- a) Length: Minimum 1.8M (6 ft.).
- b) Cable: Minimum flexible RG-6.
- c) Connector: "F" male on each end.
- I. Analog Video:
 - Provide a connection cable for each TCO analog video jack in system with 10 percent spares. Provide analog video connection cable of length to connect analog video instrument to TCO analog RF jack.
 - 2. Technical Characteristics:
 - a. Length: Minimum 1.8M (6 ft.).
 - b. Cable: Minimum flexible RG-59/U.
 - c. Connector: BNC male on each end.
- J. System Connectors:
 - 1. "F" Type Connectors:
 - a. Coaxial cable connectors and connector inserts designed to provide maximum performance with cable to be used.
 - b. Hex type crimp or a "Snap and Seal" type connectors. Use Housing to housing (KS to KS) type or 90-degree type connectors where specified by OEM.
 - c. Screw type coupling for quick connect/disconnect of coaxial cable/terminations.
 - d. Crimp-on connector designed to fit coaxial cable with integral 12.7 mm (1/2 inch) ferrule.
 - e. Technical Characteristics:
 - 1) Impedance: 75 Ohms, unbalanced.
 - 2) Working Voltage: 500 V.
 - f. Coaxial cables connected with head end quality 360 degree F or BNC connectors as applicable, meeting or exceeding standard industry and cable manufacture's specifications.
- K. Terminators:
 - 1. Coaxial:
 - a. Description: 75-Ohm terminator.
 - b. Metal-housed precision types in frequency ranges selected. Screwon type that has low VSWR when installed and proper impedance to terminate system unit or coaxial cable.
 - c. Technical Characteristics:
 - 1) Frequency: 0-1 GHz.

27 41 31 - 11

- 2) Power Blocking: As required.
- 3) Return Loss: 25 dB.
- 4) Connectors: Minimum "F", "BNC".
- 5) Impedance: 75 Ohms, unbalanced.
- 6) DC blocking.
- 7) Bandwidth: 50 MHz-890 MHz.
- L. Mounting Strips and Blocks:
 - 1. Barrier Strips for AC Power, and Control Cable or Wires:
 - a. Accommodate size and type of audio spade (or fork type) lugs used with insulating and separating strips between terminals for securing separate wires in an orderly fashion.
 - b. Provide each cable or wire end with an audio spade lug, connected to individual screw terminal on barrier strip.
 - c. Surface secured to a console, cabinet, rail, panel, etc.
 - d. 120 VAC power wires are not permitted to be connected to signal barrier strips.
 - 2. Technical Characteristics:
 - a. Terminal Size: Minimum 6-32.
 - b. Terminal Count: Any combination.
 - c. Wire size: Minimum 20 AWG.
 - d. Voltage Handling: Minimum 100 V.
 - e. Protective Connector Cover: Required for Class II and 120 VAC power connections.
- M. Coaxial Cable Kit: Coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish neat and secure installation.
 - Solderless Connectors: Install crimp-on connector using a standard F connector crimping tool.
 - Cables: Connectors designed for specific size cable being used and installed with OEM's approved installation tool. Typical system cable connectors include; but, are not limited to F, N, BNC, etc.
- N. Communication Ground System: provide this system to conform to Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

2.3 TOPOLOGY "TREE"

- A. Provide Analog RF coaxial cable distribution system in a "home run" configuration from each associated riser TR to identified locations and as shown on drawings.
- B. Provide dedicated analog RF coaxial cables from "bottom" row of "F" connectors of appropriate TR patch panel where "input" connections were made, to each floor TCO in "home run" configuration and in quantity to accommodate TCO's served by TR distribution cable system. Provide analog RF coaxial cables for each TCO circuit and as shown on drawings.
- C. Connect one end of each coaxial RF cable to a female "F" connector at each TCO, and at other locations on drawings, and opposite end to a bottom row "F" connector on patch panel in TR serving the area. Contractor is not to "interconnect" backbone with coaxial RF distribution cables or provide active RF distribution equipment.
- D. Closed Circuit Analog Video Service:
 - Analog video service is baseband (below 100 mHz in frequency bandwidth).
 - Minimum operating parameters over each installed analog video circuit:
 - a. Impedance: 75 Ohm, unbalanced.
 - b. Output Level: 1.0 V peak to peak (P-P), for 87.5 percent depth of Modulation (Mod).
 - c. Diff Gain: ±1 dB at 87.5 percent Mod.
 - d. Diff Phase: ±1.5 at 87.5 percent Mod.
 - e. Signal to Noise (S/N) Ratio: Minimum 44 dB.
 - f. Hum Modulation: -55 dB.
 - g. Return Loss: Maximum -14 dB (or 1.5 Voltage Standing Wave Ratio VSWR).
 - h. Isolation (outlet-outlet): Minimum 24 dB.
 - i. Bandwidth: Minimum 6.0 MHz per channel, fully loaded.
- E. Closed Circuit Analog Audio Service:
 - Analog audio service is baseband (below 10 mHz in frequency bandwidth).
 - Each TCO has multiple 600 (or 120) Ohm BAL line pairs, therefore analog audio circuits can be designated to one of the provided pairs of UTP or STP for each TCO.

- 3. Minimum operating parameters of analog audio circuit (NOT TELEPHONE VOICE):
 - a. Impedance: 600 Ohm, BAL.
 - b. Input Level: Minimum 59 mV RMS.
 - c. Output Level: 0 dBm.
 - d. S/N ratio: Minimum 55 dB.
 - e. Hum Modulation: Minimum -50 dB.
 - f. Return Loss: Maximum -14 dB (or 1.5 VSWR).
 - g. Isolation (outlet-outlet): Minimum 24 dB.
 - h. Frequency Bandwidth: Minimum 100 Hz 10K Hz.
- F. Interface analog RF "F", video "BNC", and audio "XL" jacks to appropriate patch panels in associated TR. Do not cross-connect analog cables in TRs to analog equipment.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Coordinate with cabling trade contractor locations of faceplates and faceplate openings for MATV back boxes.
- B. Coordinate with cabling trade contractor locations of MATV equipment in the Telecommunications Rooms.
- C. Before beginning work, verify location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits required for equipment.
 - 2. Emergency and auxiliary AC power generator requirements.
 - 3. Pull boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for systems.
 - 4. System components provided by others.
 - 5. Overhead supports and rigging hardware installed by others.
- D. Immediately notify COR and General Contractor of discrepancies.

3.2 INSTALLATION

- A. General:
 - 1. Install for ease of operation, maintenance, and testing.
 - Install work neatly, plumb and square and in a manner consistent with standard industry practice.
 - Install system to prevent direct pickup of signals from building structure and follow FCC requirements regarding low radiation or interference of RF signals.

- Protect work from dust, paint and moisture as dictated by site conditions.
- 5. Contractor is responsible for protection of work during construction phase up until final acceptance by Government.
- 6. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
- Secure equipment firmly in place, including equipment racks, system cables, etc:
 - a. Install supports, mounts, fasteners, attachments and attachment points to support their loads with a safety factor of 5:1 or better.
 - b. Do not impose weight of equipment on supports provided for other trades or systems.
 - c. Suspended equipment or associated hardware must be certified by OEM for overhead suspension.
- Locate overhead ceiling-mounted equipment as shown on drawings, with minor changes not to exceed 12 inches in any direction.
 - Mount transformers securely to brackets or enclosures using screws.
 - b. Adjust torsion springs as needed to securely support assembly.
- Install Analog RF coaxial cable distribution systems in a "home run" configuration from each associated riser TR to identified locations and as indicated on drawings.
- Coordinate finishes for any exposed work such as plates, racks, panels, speakers, etc. with design professional, Government and 0050P3B.
- 11. Coordinate cover plates with field conditions. Size and install cover plates to cover spaces between back boxes and surrounding wall.
- 12. Do not allow cable to leave or enter boxes without cover plates installed. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required.
- B. Equipment Racks:
 - Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks.

- 2. Provide security covers for devices not requiring routine operator control.
- 3. Follow manufacturer's recommendations regarding ventilation space between amplifiers. Provide adequate ventilation space between equipment for cooling. Provide vent panels and cooling fans for operation of equipment within OEM specified temperature limits.
- 4. Provide insulated connections of electrical raceway from equipment racks.
- Provide continuous raceway and conduit for cable with no more than
 40 percent fill between wire troughs and equipment racks. Ensure
 systems are mechanically separated from each other in wireway.
- C. Wiring Practice:
 - Comply with requirements for raceways and boxes specified in Division 26, Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
 - 2. Where raceway is conduit, install wiring of differing classifications in separate conduits. Where raceway is to be in an enclosure (e.g. rack, tray, wire trough, utility box, install wiring of differing classifications, sharing same enclosure, with mechanical partition and separate by at least 4 inches. Where Wiring of differing classifications must cross, cross wires perpendicular to one another.
 - 3. Do not splice cabling anywhere along entire length of run. Ensure cables are insulated and shielded from each other and from the raceway for entire length of run.
 - Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
 - Replace entire length of run of any wire or cable that is damaged or abraded during installation. There are no acceptable methods of repairing damaged or abraded wiring.
 - 6. Use wire pulling lubricants suitable for cable jacket and do not exceed pulling tension recommended by OEM.
 - 7. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
 - 8. Do not use tape-based or glue-based cable anchors.

- 9. Bond shields and drain wires to ground.
- 10. Terminate field wiring entering equipment racks as follows:
 - a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops must be of length to allow plates, panels and equipment to be removed for service and inspection.
 - b. Where terminal blocks are not designed for rack mounting, utilize 19 mm (3/4 inch) plywood or 3 mm (1/8 inch) thick aluminum plates/blank panels as a mounting surface. Do not mount on bottom of rack.
 - c. Employ permanent strain relief for any cable with an outside diameter of 25 mm (1 inch) or greater.
- 11. Make connections using rosin-core solder or mechanical connectors appropriate to application.
 - a. For crimp-type connections, use only tools that are specified by manufacturer for the application.
 - b. Use only insulated spade lugs on screw terminals sized to fit wire gauge; do not exceed two lugs per terminal.
 - c. Twist-on wire connectors or electrical tape connections are not permitted for any application.
- D. Cable Installation:
 - Support cable on maximum 122 cm (4 feet) centers. Acceptable means of cable support are cable tray and conduit (EMT, Flexible Metallic Tubing, and Communications Raceway). Attach cable bundles loosely to cable trays with plenum rated hook and loop straps. Tie wraps are not permitted as a means to bundle.
 - 2. Run cables parallel to walls.
 - 3. Do not lay cables on top of luminaires, ceiling tiles, mechanical equipment, or ductwork. Maintain minimum 61 cm (2 feet) clearance from shielded electrical apparatus.
 - 4. Test cables after the total installation is complete. Test results must document cables pass test requirements and levels. Remedy cabling problems or defects to pass testing, including installation of new cable as required.
 - 5. Terminate ends of cables on both ends, per industry and OEM's recommendations.

27 41 31 - 17

- 6. Provide proper temporary protection of cable after pulling is complete and until final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie cables up off of the floor until ready to terminate.
- 7. Cover shield/drain wires with heat-shrink tubing extending back to overall jacket. Extend tubing 6 mm (1/4 inch) past end of unused wires, fold back over jacket and secure with cable tie.
- 8. For each solder-type connection, cover bare wire and solder connection with heat-shrink tubing.
- Terminate conductors; no cable can contain unterminated elements. Make terminations only at outlets and terminals.
- 10. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables cannot be spliced.
- 11. Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 12. Cold-Weather Installation: Bring cable to room temperature without using heat lamps before de-reeling.
- 13. Install cable without passing through structural members or in contact with pipes, ducts, or potentially damaging items.
- E. Labeling:
 - Permanently label outlets, connectors, jacks, electronics and other equipment.
 - Engrave and paint fill patch panel labels using minimum 3 mm (1/8 inch) high lettering and contrasting paint.
 - 3. For rack-mounted equipment, use engraved Lamacoid labels with white minimum 3 mm (1/8 inch) high lettering on black background. Label front and back of rack-mounted equipment.
 - Where multiple pieces of equipment reside in same rack group, label each indicating to which room, channel, outlet locations, etc. they correspond.
 - 5. Permanently label cables at each end, including intra-rack connections. Cover labels by same, transparent heat-shrink tubing covering end of overall jacket. Alternatively, machine printed labels including a clear protective wrap can be used.

- 6. Label racks with contractor's name no more than once on each continuous set of racks; do not label wall plates or portable equipment with contractor's name.
- 7. Ensure each piece of OEM equipment has permanently attached NRTL Label indicating service the equipment is to perform. Equipment not bearing NRTL marks will not be permitted as part of system.
- F. Protect Analog network devices during unpacking and installation by wearing electrostatic discharge (ESD) wrist straps tied to chassis ground for prevention of electrical shock.
- G. Cutting and Patching:
 - Keep work area clear of debris and clean area daily at completion of work.
 - Patch and paint any wall or surface that has been disturbed by execution of this work.
 - Provide any additional cutting, drilling, fitting or patching, not indicated as provided by others, to complete work or to make its parts fit together.
 - 4. Do not damage or endanger a portion of work of the Government or separate contractors by cutting, patching, excavation or otherwise altering such construction. Prior to cutting or otherwise altering such construction obtain written consent of COR and of such separate contractor. Do not unreasonably withhold from COR or a separate contractor, contractor's consent to cutting or otherwise altering MATV work.
 - 5. Where coring of in-place concrete is required, clearly identify location of such coring in the field and have location accepted by COR prior to commencement of coring.
- H. Fireproofing:
 - Where MATV cables penetrate rated walls, floors and ceilings, fireproof openings to restore rating.
 - 2. Provide conduit sleeves for cables that penetrate rated walls.
 - 3. After cabling installation is complete, install fire proofing material in and around conduit sleeves and openings to restore rating. Install fire proofing material thoroughly and neatly.
 - 4. Seal floor and ceiling penetrations. Use only materials and methods that preserve the integrity of fire stopping system and its rating.

27 41 31 - 19

- I. Grounding:
 - Communication Ground: provide this system in accordance with Section
 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS, and:
 - a. Bond cable shields and equipment to ground to eliminate shock hazard and to minimize ground loops, common mode returns, noise pickup, cross talk, and other impairments.
 - b. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.
 - c. Do not connect system ground to building's external lightning protection system.
 - d. Do not "mix grounds" of different systems. Do not use electrical system conductors for ground.
- J. Cleaning: Refer to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

3.3 FIELD QUALITY CONTROL

- A. Tests:
 - 1. Refer to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - HDTV MATV System is NFPA listed; therefore, testing provisions are the minimum to be performed and provided by contractor and warranted by OEM.
- B. Pretesting:
 - Upon completing installation of system, align, balance, and pretest entire system under full operating conditions.
 - 2. Pretesting Procedure:
 - a. During system pretest verify, utilizing accepted test equipment, system is operational and meets performance requirements.
 - b. Pretest and verify specification requirements are met and system functions are operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, pretest each of the following locations:
 - 1) Local and Remote Control Units/Enunciation Panels.
 - 2) Networked locations.
 - 3) System interface locations (i.e.PA, Nurse Call, etc.).
 - 4) System trouble reporting.

27 41 31 - 20

- 5) UPS operation.
- 6) Primary and emergency AC power requirements.
- 7) Extra auxiliary generator requirements.
- c. Provide recorded system pretest measurements and certification that system is ready for formal acceptance test to COR.
- C. Acceptance Test:
 - After system has been pretested and contractor has submitted pretest results and certification to COR, schedule an acceptance test dates and give COR 30 days written notice prior to date acceptance test is expected to begin. Include expected duration of time for test with notification of acceptance test.
 - 2. Test only in the presence of COR and AHJ (SMCS 0050P2H3).
 - 3. Test utilizing test equipment to certify proof of performance.
 - 4. Verify that total system meets requirements of this specification.
- D. Verification Tests:
 - Test copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield. Test cables after termination.
 - Perform same tests appropriate to each coaxial cable accepted for use in system.
- E. Performance Testing: Test every video distribution outlet for clear picture and sound.
 - At each outlet with television, select each channel and view picture on television. Observe active channels. Verify picture is clear with no visual presence of interference of any kind and no audible variance in volume level between channels.
 - 2. Perform tests utilizing signal level meter to determine values and record.
- F. Total System Acceptance Test: Perform verification tests for copper cabling systems after complete video distribution system and workstation outlet are installed.
 - 1. Acceptance tests are performed on a "go-no-go" basis.
 - Only perform operator adjustments required to show proof of performance.
 - 3. Demonstrate and verify that installed system complies with requirements of specification under operating conditions.

- 4. Obtain rating of system as either acceptable or unacceptable from COR at conclusion of test.
- 5. Failure of any part of system that precludes completion of system testing, and which cannot be repaired in four hours, is cause for terminating acceptance test of system. Repeated failures that result in a cumulative time of eight hours to affect repairs can cause entire system to be declared unacceptable and require retest of entire system at the convenience of Government.
- G. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. Coordinate COR tour of major areas where system and sub-systems are installed to ensure they are operationally ready for proof of performance testing. Provide system inventory including available spare parts for COR to verify and check each item of installed equipment has appropriate NRTL certification labels affixed during tour.
 - b. Formally inventory and review system diagrams, record drawings, equipment manuals, Telecommunications Infrastructure Plant (TIP) AutoCAD files, intermediate, and pretest results formally inventoried and reviewed.
 - c. Failure of system to meet installation requirements of this specification is grounds for terminating testing.
 - 2. Operational Test:
 - a. After physical and mechanical inspection, verify head end terminating and control equipment meets performance requirements outlined herein. Utilize spectrum analyzer and signal level meter to accomplish this requirement.
 - b. Following remote control unit to the head end equipment's output. Test tap to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
 - c. Check distribution system at each interface, junction, and distribution point, first, middle, and last leg to verify that HDTV MATV video, audio and control signals meet system performance standards.

27 41 31 - 22

- d. Functionally test HDTV MATV outlets utilizing contractor's accepted hospital grade TV receiver and spectrum analyzer.
- e. Once these tests have been completed, test each installed subsystem function as a unified, functioning and fully operating system.
- f. Individual Item Test: COR can select individual items of equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet specification.
- H. Acceptable Test Equipment:
 - Utilize test equipment with calibration tag of an acceptable calibration service dated not more than 12 months prior to test. Furnish test equipment list that includes make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Oscilloscope.
 - e. Pillow Speaker Test Set (Pillow Speaker with appropriate load and cross connections instead of the set is acceptable).
- I. Non-Conforming Work:
 - Government, OEM and contractor must agree to results of Acceptance Test, create consensus punch lists, and reschedule testing for technical deficiencies and equipment shortages.
 - Any retests needed to reach agreement and validate results of punch lists, or to establish compliance with these specifications, are at contractor's expense.
 - These requirements must be met for contract compliance and Government acceptance of system.

3.4 TRAINING

- A. Provide thorough training of facility's engineering and maintenance staff on operation, performance and preventative maintenance of system.
- B. Schedule training at convenience of facility's Chief Engineer.
- C. MATV system will not be accepted without completion of training.
- D. Provide the following training at locations provided by Government:

27 41 31 - 23

- Minimum eight hours for system operation and performance no less than 48 hours prior to opening of facility.
- Minimum eight hours for system preventative maintenance no less than
 24 hours before opening of facility.

3.5 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - 1. Response Time:
 - a. Standard work week is 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - b. Respond and correct on-site trouble calls, during standard work
 week:
 - Routine trouble call within one working day. Routine trouble is an inoperable system outlet.
 - 2) Emergency trouble call within six hours. Emergency trouble is an inoperable subsystem or distribution point.
- B. Provide report itemizing each deficiency found and corrective actions performed, to COR, for each trouble call.

- - - E N D - - -

SECTION 27 51 16 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system warranty, training and services for, and incidental to, the complete installation of new and fully operating National Fire Protection Association (NFPA) - Life Safety Code 101.3-2 (a) Labeled and (b) Listed Emergency Service Public Address System (PAS) and associated equipment (here-in-after referred to as the System) in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting PAS communications signals generated local and remotely as detailed herein.
- B. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 0050P3B) tested, certified and ready for operation.
- C. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- D. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- E. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE. HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS, SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's PM, RE and TVE-0050P3B. <u>The VA PM is the</u> <u>only approving authority</u> for other amendments to this document that may be granted, on a case by case basis, in writhing with technical

27 51 16-1

concurrencies by VA's RE, TVE-0050P3B and identified Facility Project Personnel.

F. The Original Equipment Manufacturer (OEM) and Contractor shall ensure <u>that all</u> management, sales, engineering and installation personnel have read and understand the requirements of this specification <u>before</u> the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement attesting this requirement as a part of the technical submittal that includes each name and certification, including the OEMs.

1.2 RELATED SECTIONS

- A. 01 33 23 Shop Drawings, Product Data and Samples.
- B. 07 84 00 Firestopping.
- C. 26 05 19 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- D. 27 05 11 Requirements for Communications Installations.
- E. 27 05 26 Grounding and Bonding for Communications Systems.
- F. 27 05 33 Raceways and Boxes for Communications Systems.
- G. 27 10 00 Control, Communication and Signal Wiring.
- H. 27 11 00 Communications Cabling Interface and Equipment Rooms Fittings.
- I. 27 15 00 Horizontal and Vertical Communications Cabling Equipment and Systems.

1.3 DEFINITIONS

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and warranty.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.
- D. Headquarters Technical Review, for National and VA communications and security, codes, frequency licensing, standards, guidelines compliance: Office of Telecommunications Special Communications Team (0050P2B)

27 51 16-2

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

1335 East West Highway - 3rd Floor Silver Spring, Maryland 20910 (0) 301-734-0350, (F) 301-734-0360

E. Contractor: Radio Contractor; you; successful bidder

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards, including, but not limited to:
 - 1. United States Federal Law:
 - a. Departments of:
 - Commerce, Consolidated Federal Regulations (CFR), Title 15 Under the Information Technology Management Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines that are developed by the:
 - a) Chapter II, National Institute of Standards Technology (NIST - formerly the National Bureau of Standards). Under Section 5131 of the Information Technology Management Reform Act of 1996 and the Federal Information Security Management Act of 2002 (Public Law 107-347), NIST develops - Federal Information Processing Standards Publication (FIPS) 140-2-Security Requirements for Cryptographic Modules.
 - b) Chapter XXIII, National Telecommunications and Information Administration (NTIA - aka 'Red Book') Chapter 7.8 / 9;
 CFR, Title 47 Federal communications Commission (FCC) Part 15, Radio Frequency Restriction of Use and Compliance in "Safety of Life" Functions & Locations
 - 2) FCC Communications Act of 1934, as amended, CFR, Title 47 -Telecommunications, in addition to Part 15 - Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/ Locations (also see CFR, Title 15 - Department of Commerce, Chapter XXIII - NTIA):
 - a) Part 15 Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/Locations.
 - b) Part 58 Television Broadcast Service.

27 51 16-3

- c) Part 90 Rules and Regulations, Appendix C.
- d) Form 854 Antenna Structure Registration.
- 3) Health, (Public Law 96-88), CFR, Title 42, Chapter IV Health & Human Services, CFR, Title 46, Subpart 1395(a)(b) JCAHO "a hospital that meets JCAHO accreditation is deemed to meet the Medicare conditions of Participation by meeting Federal Directives:"
 - a) All guidelines for Life, Personal and Public Safety; and, Essential and Emergency Communications.
- 4) Labor, CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standard:
 - a) Subpart 7 Definition and requirements (for a NRTL 15 c's, for complete list, contact (http://www.osha.gov/dts/otpca/nrtl/faq nrtl.html):
 - 1) UL:
 - a) 44-02 Standard for Thermoset-Insulated Wires and Cables.
 - b) 65 Standard for Wired Cabinets.
 - c) 83-03 Standard for Thermoplastic-Insulated Wires and Cables.
 - d) 467-01 Standard for Electrical Grounding and Bonding Equipment
 - e) 468 Standard for Grounding and Bonding Equipment.
 - f) 486A-01 Standard for Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - g) 486C-02 Standard for Splicing Wire Connectors.
 - h) 486D-02 Standard for Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations.
 - i) 486E-00 Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors.
 - j) 493-01 Standard for Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable.
 - k) 514B-02 Standard for Fittings for Cable and Conduit.

27 51 16-4

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

- 1) 1069 Hospital Signaling and Nurse Call Equipment.
- m) 1333 Vertical (Riser) Fire Rating.
- n) 1449 Standard for Transient Voltage Surge Suppressors.
- o) 1479-03 Standard for Fire Tests of Through-Penetration Fire Stops.
- p) 1863 Standard for Safety, Communications Circuits Accessories.
- q) 2024 Standard for Optical Fiber Raceways.
- r) 60950-1/2 Information Technology Equipment -Safety.
- Canadian Standards Association (CSA): same tests as for UL.
- Communications Certifications Laboratory (CCL): same tests as for UL.
- Intertek Testing Services NA, Inc. (ITSNA formerly Edison Testing Laboratory [ETL]): same tests as for UL.
- b) Subpart 35 Compliance with NFPA 101 Life Safety Code.
- c) Subpart 36 Design and construction requirements for exit routes.
- d) Subpart 268 Telecommunications.
- e) Subpart 305 Wiring methods, components, and equipment for general use.
- 5) Department of Transportation, CFR, Title 49 (Public Law 89-670), Part 1, Subpart C - Federal Aviation Administration (FAA):
 - a) Standards AC 110/460-ID & AC 707 / 460-2E Advisory Circulars for Construction of Antenna Towers.
 - b) Forms 7450 and 7460-2 Antenna Construction Registration.
- 6) Veterans Affairs (Public Law No. 100-527), CFR, Title 38, Volumes I & II:
 - a) Office of Telecommunications:
 - 1) Handbook 6100 Telecommunications.
 - a) Spectrum Management FCC & NTIA Radio Frequency Compliance and Licensing Program.

27 51 16-5

- b) Special Communications Proof of Performance Testing,VACO Compliance and Life Safety Certification(s).
- b) Office of Cyber and Information Security (OCIS):
 - 1) Handbook 6500 Information Security Program.
 - Wireless and Handheld Device Security Guideline Version
 3.2, August 15, 2005.
- c) VA's National Center for Patient Safety Veterans Health Administration Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- d) VA's Center for Engineering Occupational Safety and Health, concurrence with warning identified in VA Directive 7700.
- e) Office of Construction and Facilities Management (CFM):
 - 1) Master Construction Specifications (PG-18-1).
 - 2) Standard Detail and CAD Standards (PG-18-4).
 - 3) Equipment Guide List (PG-18-5.
 - Electrical Design Manual for VA Facilities (PG 18-10), Articles 7 & 8.
 - 5) Minimum Requirements of A/E Submissions (PG 18-15):
 - a) Volume B, Major New Facilities, Major Additions; and Major Renovations, Article VI, Paragraph B.
 - b) Volume C Minor and NRM Projects, Article III, Paragraph S.
 - c) Volume E Request for Proposals Design/Build Projects, Article II, Paragraph F.
 - Mission Critical Facilities Design Manual (Final Draft -2007).
 - Life Safety Protected Design Manual (Final Draft -2007).
 - Solicitation for Offerors (SFO) for Lease Based Clinics
 (05-2009).
- b. Federal Specifications (Fed. Specs.):
 - A-A-59544-00 Cable and Wire, Electrical (Power, Fixed Installation).
- 2. United States National Codes:
- American Institute of Architects (AIA): Guidelines for Healthcare Facilities.
- b. American National Standards Institute/Electronic Industries Association/Telecommunications Industry Association (ANSI/EIA/TIA):
 - 568-B Commercial Building Telecommunications Wiring Standards:
 - a) B-1 General Requirements.
 - b) B-2 Balanced twisted-pair cable systems.
 - c) B-3 Fiber optic cable systems.
 - 569 Commercial Building Standard for Telecommunications Pathways and Spaces.
 - 606 Administration Standard for the Telecommunications Infrastructure of Communications Buildings.
 - 607 Commercial Building Grounding and Bonding Requirements for Telecommunications.
 - 5) REC 127-49 Power Supplies.
 - 6) RS 160-51 Sound systems.
 - 7) RS 270 Tools, Crimping, Solderless Wiring Devices, Recommended Procedures for User Certification.
 - 8) SE 101-A49 Amplifier for Sound Equipment
 - 9) SE 103-49 Speakers for Sound Equipment
- c. American Society of Mechanical Engineers (ASME):
 - 1) Standard 17.4 Guide for Emergency Personnel.
 - 2) Standard 17.5 Elevator & Escalator Equipment (prohibition of installing non-elevator equipment in Elevator Equipment Room / Mechanical Penthouse).
- d. American Society of Testing Material (ASTM):
 - D2301-04 Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape.
- e. Building Industries Communications Services Installation (BICSI):
 - All standards for smart building wiring, connections and devices for commercial and medical facilities.
 - 2) Structured Building Cable Topologies.
 - 3) In consort with ANSI/EIA/TIA.
- f. Institute of Electrical and Electronics Engineers (IEEE):

- SO/TR 21730:2007 Use of mobile wireless communication and computing technology in healthcare facilities -Recommendations for electromagnetic compatibility (management of unintentional electromagnetic interference) with medical devices.
- 2) 0739-5175/08/©2008 IEEE Medical Grade Mission Critical -Wireless Networks.
- 3) C62.41 Surge Voltages in Low-Voltage AC Power Circuits.
- g. NFPA:
 - 1) 70 National Electrical Code (current date of issue) Articles 517, 645 & 800.
 - 75 Standard for Protection of Electronic Computer Data-Processing Equipment.
 - 3) 77 Recommended Practice on Static Electricity.
 - 4) 99 Healthcare Facilities.
 - 5) 101 Life Safety Code.
 - 6) 1600 Disaster Management, Chapter 5.9 Communications and Warning
- 3. State Hospital Code(s).
- 4. Local Town, City and/or County Codes.
- 5. Accreditation Organization(s):
 - a. Joint Commission on Accreditation of Hospitals Organization
 (JCAHO) Section VI, Part 3a Operating Features.

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of systems of comparable size and complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete responsibility for the design, installation, certification, operation,

and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.

- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.
- E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's PA equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.
- C. The Contractor shall display all applicable national, state and local licenses and permits.

1.7 SCHEDULING

- A. After the award of contract, the Contractor shall prepare a detailed schedule (aka milestone chart) using "Microsoft Project" software or equivalent. The Contractor Project Schedule (CPS) shall indicate detailed activities for the projected life of the project. The CPS shall consist of detailed activities and their restraining relationships. It will also detail manpower usage throughout the project.
- B. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS

- (Note: The Contractor is encouraged, but not required, to submit separate technical submittal(s) outlining alternate technical approach(s) to the system requirements stated here-in as long as each alternate technical document(s) is complete, separate, and submitted in precisely the same manner as outlined herein. VA will review and rate each received alternate submittal, which follows this requirement, in exactly the same procedure as outlined herein. Partial, add-on, or addenda type alternates will not be accepted or reviewed.)
 - A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
 - B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.
 - C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.
 - D. Provide four (4) copies to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).
 - E. Provide interconnection methods, conduit (where not already installed), junction boxes (J-Boxes), cable, interface fixtures and equipment lists for the: ENR(s) (aka DMARC), TER, TCR, MCR, MCOR, PCR, ECR, Stacked Telecommunications Rooms (STR), Nurses Stations (NS), Head End Room (HER), Head End Cabinet (HEC), Head End Interface Cabinet (HEIC) and approved TCO locations Telecommunications Infrastructure Plant (TIP) interface distribution layout drawing, as they are to be installed and

interconnected to teach other (REFER TO APPENDIX B - SUGGESTED TELECOMMUNICATIONS ONE LINE TOPOLOGY pull-out drawing).

- F. Headend and each interface distribution cabinet layout drawing, as they are expected to be installed.
- G. Equipment OEM technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- H. Engineering drawings of the System, showing calculated of expected signal levels at the headend input and output, each input and output distribution point, and signal level at each telecommunications outlet.
- I. Surveys Required as a Part of The Technical Submittal:
 - 1. The Contractor shall provide the following System survey(s) that depict various system features and capacities required <u>in addition</u> <u>to</u> the on-site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal Survey requirements), as a minimum:
 - a. PA Cable System Design Plan:
 - 1) An OEM and contractor designed functioning PA System cable plan to populate the entire TIP empty conduit/pathway distribution systems provided as a part of Specification 27 11 00 shall be provided as a part of the technical proposal. A specific functioning PA: cable, interfaces, J-boxes and back boxes shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems' entire PA cable and accessory requirements and engineer a functioning PA distribution system and equipment requirement plan of the following paragraph(s), at a minimum:

1.9 PROJECT RECORD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floor plans shall be marked in pen to include the following:
 - 1. All device locations with UL labels affixed.
 - 2. Conduit locations.
 - 3. Head-end equipment and specific location.
 - 4. Each interface and equipment specific location.

27 51 16-11

- Facility Entrance (aka DEMARC) Room(s) interface equipment and location(s).
- Telephone Equipment Room (TER) interface equipment and specific location.
- 7. Main Computer Room (MCR) interface equipment and specific location.
- 8. Police Control Room (PCR) interface equipment and specific location.
- 9. Engineering Control Room (ECR) interface equipment and specific location
- 10. Telecommunication Outlet (s -TCO) equipment and specific location
- 11. TIP Wiring diagram(s).
- 12. Warranty certificate.
- 13. System test results.
- 14. System Completion Document(s) or MOU.

1.10 WARRANTIES / GUARANTY

- A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.
- B. The Contractor shall agree to grantee the system according to the guidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

- A. Use of the site shall be at the GC's direction.
- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.

D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that is a part of the system.
- C. Contractor shall submit written notice that:
 - 1. Contract Documents have been reviewed.
 - 2. Project has been inspected for compliance with contract.
 - 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS

2.0 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

- A. Furnish and install a complete and fully functional and operable Nurse Call System for each location shown on the contract drawings and TCOs WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS A PART OF SPECIFICATION 27 11 00.
- B. The head-end equipment for the PA System shall be located in the Communications Room as noted on the Technology Drawings.
- C. Coordinate features and select interface components to form an integrated PA system. Match components and interconnections between the systems for optimum performance of specified functions.
- D. Expansion Capability: The PA equipment interfaces and cables shall be able to increase number of enunciation points in the future by a minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.
- E. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz.

27 51 16-13

- F. Meet all FCC requirements regarding low radiation and/or interference of RF signal(s). The system shall be designed to prevent direct pickup of signals from within and outside the building structure.
- G. Weather/Water Proof Equipment: Listed and labeled by an OSHA certified National Recognized Testing Laboratory (NRTL - i.e. UL) for duty outdoors or in damp locations.
- H. Deliver a fully functioning and operable PA in the specific locations shown on the drawings.

2.1 SYSTEM DESCRIPTION

- A. Furnish and install a complete and fully functional and operable HF Radio System. Provide additional require conduit(s) according to Specification 27 11 00.
- B. The Contractor is responsible for interfacing the telephone system with the System and shall be the interface points for connection of the radio interface cabling from the interface unit(s). The interface unit(s) shall be provided by the Contractor.
- C. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection, but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The total PA system shall be configured and installed so that the combination of equipment actually employed does not produce any undesirable visual or aural effects such as signal distortions, noise pulses, glitches, hum, transients, images, etc. The interface points must adhere to all standards described herein for the full separation of Critical Care and Life Safety systems.
- D. It is not acceptable to utilize the telephone cable system for the control of radio signals and equipment. The System Contractor shall connect the Telephone System Remote Control System to the Radio System Paging Control Unit ensuring that all NFPA and UL Critical Care and Life Safety Circuit and System separation guidelines are satisfied. The System Contractor is not allowed to make any connections to the Telephone System. The Owner shall arrange for the interconnection between the PA and Telephone Systems with the appropriate responsible parties.

- E. System hardware shall consist of a standalone (separate) PA communications network comprised of amplifiers, mixers, speakers, volume controls, test sets, telephone private branch exchange (PBX) interface equipment, equipment cabinets/racks, wiring and other options such as, sub zoning in addition to "all call" functions, computer interfaces, printer interfaces and wireless network interfaces, (when specifically approved by 0050P3B and VA Headquarters Spectrum Management 0050P2B herein after referred to as 0050P2B) as shown on drawings. All necessary equipment required to meet the intent of these specifications, whether or not enumerated within these specifications, shall be supplied and installed to provide a complete and operating nurse/patient communications network.
- F. Systems firmware shall be the product of a reputable firmware OEM of record with a proven history of product reliability and sole control over all source code. Manufacturer shall provide, free of charge, product firmware/software upgrades for a period of two (2) years from date of acceptance by VA for any product feature enhancements. System configuration programming changes shall not require any exchange of parts and shall be capable of being executed remotely via a modem connection (when specifically approved first by 0050P3B).
- G. The PA Head End Equipment shall be located in the Telecommunications Room as noted on the Technology Drawings. The PA shall cover floor(s) the area of renovation as shown on the Technology Drawings. The PA shall provide zoned, one-way voice paging through distributed, ceiling mounted loudspeakers. Voice input into the PA shall be by zone using the telephone system. The Nurse Call / Code Blue System may interface the PA system when specifically approved by VA Headquarters 0050P3B during the project approval process prior to contract bidding.
- H. The System shall utilize microprocessor components for all signaling and programming circuits and functions. Self contained or on board system program memory shall be non-volatile and protected from erasure from power outages for a minimum of 24 hours.
- I. Provide a backup battery or a UPS for the System (including each distribution cabinet/point, CRT, LCD and Monitor) to allow normal operation and function (as if there was no AC power failure) in the

event of an AC power failure or during input power fluctuations for a minimum of two (2) Hours.

- J. The System is defined as Emergency Service and the Code Blue functions is defined as Life Safety/Support by NFPA (re Part 1.1.A) and so evaluated by JCAHCO. Therefore, the system shall have a minimum of two (2) additional remote enunciation points in order to satisfy NFPA's Life Safety Code 101 where each enunciation point shall fully function independent of the Facility's PBX.
 - 1. These two (2) additional remote locations shall be fully manned:
 - a. 24/7/365 for certified Hospital .
 - b. As long as other identified VA Medical / Servicing Facilities are open for servicing patients.
 - c. The minimum remote enunciation locations shall be:
 - 1) The Telephone / PBX Operator Room.
 - 2) The Police Control / Operations Room.
 - Other location(s) that is specifically approved by VA Headquarters TVE - 0050P3B DURING THE PROJECT DEVELOPMENT STAGES AND PRIOR TO EQUIPMENT PURCHASE.
 - d. One (1) global (aka "all call") hard wired zone shall be provided that connects to every system speaker.
 - e. There shall be two hard-wired sub-zones designated as follows:
 - 1) Public Area/Waiting Room.
 - 2) Radiology Department.
 - 3) Each zone shall be capable of be programmed.
 - 4) The System shall have a minimum of three (3), unused zones.
 - 2. The System shall allow voice pages to be made within a single zone, across programmed multiple zones or a global page (all zones) by using preset codes entered into the keypad of any telephone instrument attached to the PBX.
- K. The System shall interface with the Facility's existing PAS so that a global page (aka "all call" page) is communicated to the existing PAS and the new System of this project. Arrangements for interconnection of the System and the telephone system(s) shall be coordinated with the owner and the PBX provider.
- L. The system shall be designed to provide continuous electrical supervision of the complete and entire system (i.e. light bulbs, wires,

27 51 16-16

contact switch connections, master control stations, wall stations, circuit boards, data, audio, and communication busses, main and UPS power, etc.). All alarm initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and UPS power circuits shall be supervised for a change in state (i.e. primary to backup, low battery, UPS on line, etc.). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the main supervisory panel, nurse control station and all remote amplifier locations.

- M. When the System is approved to connect to a separate communications system (i.e. LAN, WAN, Telephone, Nurse Call, radio raging, wireless systems, etc) the connection point shall be at one location and shall meet the following minimum requirements for each hard wired connection (note each wireless system connection MUST BE APPROVED PRIOR TO CONTRACT BID BY VA HEADQUARTERS 0050P3B AND 0050P2B):
 - 1. UL 60950-1/2.
 - 2. FIPS 142.
 - 3. FCC Part 15 Listed Radio Equipment is not allowed.
- N. All passive distribution equipment shall meet or exceed -80 dB radiation shielding (aka RFI) shielding specifications and be provided with screw type audio connectors.
- O. All equipment face plates utilized in the system shall be stainless steel, anodized aluminum or UL approved cycolac plastic for the areas where provided.
- P. All trunk, branch, and interconnecting cables and unused equipment ports or taps shall be terminated with proper terminating resistors designed for RF, audio and digital cable systems without adapters.
- Q. Noise filters and surge protectors shall be provided for each equipment interface cabinet, headend cabinet, control console and local and remote amplifier locations to insure protection from input primary AC power surges and to insure noise glitches are not induced into low voltage data circuits.
- R. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and RF transmission line interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the system

OEM. Base band cable systems shall utilize barrier terminal screw type connectors, at a minimum. As an alternate, crimp type connectors installed with a ratchet type installation tool are acceptable provided the cable dress, pairs, shielding, grounding, connections and labeling are the same as the barrier terminal strip connectors. Tape of any type, wire nuts or solder type connections are unacceptable and will not be approved.

- S. Audio Level Processing: The control equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each sub-zone in the system and distribute them into the System's RF interfacing distribution trunks and amplification circuits. It is acceptable to use identified Telephone System cable pairs designated for Two-Way Radio interface and control use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor. The use of telephone cable to distribute RF signals, carrying system or sub-system AC or DC voltage is not acceptable and will not be approved. Additionally, each control location shall be provided with the equipment required to insure the system can produce its designed audio channel capacity at each speaker identified on the contract drawings. The Contractor shall provide: a spare set of telephone paging modules as recommended by the OEM (as a minimum provide one spare module for each installed module); one spare audio power amplifier, one spare audio mixer, one spare audio volume limiter and/or compressor, and one spare audio automatic gain adjusting device, and minimum RF equipment recommended by the OEM.
- T. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. Unless otherwise noted in this Part, equipment quantities shall be as indicated on the drawings.

2.2 SYSTEM PERFORMANCE:

- A. At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's PA system voice and data service as follows:
 - Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal

Telecommunications System (FTS) at each PSTN and FTS interface, interconnection and terminating locations in the TERs.

- Audio Input: The signal level of each audio input channel at each input point shall be a MINIMUM of zero decibels measured (dBm), +0.10 dBm across 150 Ohms, balanced.
- 3. Audio Output: The audio signal level at each speaker shall be a MINIMUM of +0.25 Watt (W) and a maximum of +20 W, 600 Ohms balanced impedance, on a 70.7 V audio distribution line Contractor to determine and set each speaker's proper audio signal level (top) based on speaker location and the ambient noise level in speaker coverage area.
- The system shall meet the following MINIMUM parameters at each speaker:
 - a. Cross Modulation: -46 dB
 - b. Hum Modulation: -55 dB
 - c. Isolation (outlet-outlet): 24 dB
 - d. Impedance:
 - Distribution: 600 Ohm balanced @ 70.7 V audio line level.
 Speaker: Selectable, as required.
 - e. Audio Gain: 10 dB minimum @ mid-range measured with a sound pressure level meter (SPL)
 - f. Signal to noise (S/N) ratio: 35 dB, minimum
- B. Audio Level Processing: The head-end equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each zone or sub-zone in the system and distribute them into the system's distribution trunks. It is acceptable to use identified telephone system cable pairs designated for PA use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor.
 - 1. THE USE OF TELEPHONE CABLE TO DISTRIBUTE PA SIGNALS CARRYING AC OR DC VOLTAGE IS NOT ACCEPTABLE AND WILL NOT BE APPROVED.
 - Additionally, each remote location shall be provided with the equipment required to ensure the system supervision and designed audio channel capacity at each speaker identified on the contract drawings.

27 51 16-19

2.3 MANUFACTURERS

- A. The products specified shall be new, FCC and UL Listed, labeled and produced by OEM of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,
 - Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
 - 3. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid (IFB).
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.
- C. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as an Emergency performing Public Safety Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Public and Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory (NRTL) where such standards have been established for the supplies, materials or equipment.
 - 3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is

in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.

4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.4 PRODUCTS

- A. General.
 - Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
 - Each cabinet shall be provided with internal and external items to maintain a neat and orderly system of equipment, wire, cable and conduit connections and routing.
 - 3. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.
 - b. The following equipment items are the minimum requirements of VA to provide an acceptable system described herein:

|--|

Quantity Unit

1.	As	required	Interface Panel(s)
1.a	As	required	Electrical Supervision
			Trouble Enunciator
1.a.1.	As	required	Equipment Back Box(s)
1.a.2.	As	required	Telephone Access Equipment
1.a.3.	As	required	Radio Paging Access Equipment
1.a.3.a.	As	required	Radio Pager Equipment
1.a.4.	As	required	Wireless Access Equipment
1.a.5.	As	required	Personal Communicator
			Equipment
2.	As	required	Lightning Arrestor
3.	As	required	Head End Equipment Locations
3.a	As	required	Cabinet(s)

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 3.a.1. As required AC Power Conditioner & Filter 3.a.2. As required UPS 3.a.3. As required Main Power Amplifiers 3.a.3.c As required Bistributed Amplifiers (When Approved) 3.a.4. As required Wire Cable Connector(s) 3.a.4.c As required Wire Cable Connector(s) 3.a.4.c As required Wire Cable Connector(s) 3.a.4.c As required Head End Function(s) 4. As required Equipment Back Box(s) 4.a.1. As required Horn 4.a.1.c As required Horn 4.a.1.c As required Coverhead 4.a.1.d As required As required Coverhead 4.a.1.d As required Aspeaker As required As required As

B. ENT (aka DEMARC) Room(s):

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.

- C. TER, TCR, TR, SCC, PCR, STR, HER Rooms and Equipment: Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.
 - 1. Interface Equipment:
 - a. TER:
 - 1) Paging adaptor:
 - a) The Contractor shall coordinate the installation of the paging adapter(s) designed for use with the Facility's telephone system with the Facility Telephone Contractor or local telephone company.
 - b) The Contractor shall provide and install a paging adapter(s) for each zone and sub zone. The paging adapter(s) shall be accessible by dialing a telephone

27 51 16-22

number provided by the Facility's Telephone Contractor. The Paging Adapter shall:

- 1) Monitor each audio input and output on the unit.
- Be provided with an electrical supervision panel to provide both audio and visual trouble alarms.
- Be provided as part of the head end equipment and shall be located in the Telephone Switch Room
- 4) Be provided with Executive (aka emergency) Paging Override of all routine paging calls in progress or being accessed to allow system "all call" (aka global) and radio paging calls designated as (Code One Blue) functions.
- 5) Be capable of internal time out capability.
- 6) Function completely with the interface module.
- 7) Provide one spare adapter.
- c) Time Out Device: A time out device/capability shall be provided to prevent system "hang-up" due to an off-hook telephone. The device shall be able to be preset from 30 seconds to two (2) minutes. Its function shall not interfere with or override the required "all call" (aka global) operational capability.
 - 1) Central Processor Module:
 - Controls system operations and holds all programmed parameters.
 - 3) Data link connection to additional CPU modules.
- d) Power Module: Provides 12V DC @ 800mA to Central Processor Module.
- e) Minimum three (3) Zone Module:
 - Provides a minimum of three (3) paging zone outputs at 70V audio sound level.
 - 2) Background Music inhibit switch for each zone.
- 2) Audio Monitor Panel:
 - a) The panel shall be EIA/TIA standard for 483 mm (19") cabinet mounting.
 - b) It shall be provided in the upper portion of the head-end equipment cabinet.

27 51 16-23

c) Provide one (1) spare panel.

- 3) Trouble Annunciator Panel:
 - a) A trouble annunciator panel shall be provided in the headend cabinet, and at locations as designated on the contract drawings. The panel(s) shall be compatible with or generate electrical and/or electronic supervising signals to continuously monitor the operating condition for the System head-end audio power amplifier(s), remote power amplifier(s), microphone consoles and interconnecting trunks. The panels shall generate an audible and visual signal when the System's supervising system detects an amplifier or trunk-line is malfunctioning.
 - b) Provide one (1) spare panel.
- 4) Head-End Equipment
 - a) Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system listed herein. Headend components may be rack mounted or wall mounted in a metal enclosure.
 - b) Provide the head end equipment in the closed telecommunications closet where the PA system is installed to include the minimum equipment listed herein.
 - c) Provide minimum of 30 minute battery back-up to system components.
- 5) Equipment Cabinet: Comply with TIA/EIA-310-D. Lockable, ventilated metal cabinet houses terminal strips, power supplies, amplifiers, system volume control, and other switching and control devices required for conversation channels and control functions
 - a) Vertical Equipment Rack, Wall Mounted (to be included inside of the Equipment Cabinet):
 - b) 74" (48RU) rack space, Welded Steel construction, Minimum 20" usable depth, Adjustable front mounting rails.
 - Install the following products in rack provided by same manufacturer or as specified:
 - 2) Security screws w/ nylon isolation bushings.

27 51 16-24

- 3) Textured blank panels.
- 4) Custom mounts for components without rack mount kits.
- 5) Security covers.
- 6) Copper Bus Bar.
- 7) Power Sequencer rack mounted power conditioner and (provide as needed) delayed sequencer(s) with two (2) inswitched outlets each and contact closure control inputs.
- 8) Rack mounting: Provide rack mount kit.
- 6) Amplifier Equipment:
 - a) Paging (aka zone):
 - Inputs for 600-ohm balanced telephone line, LO-Z balanced microphone, and background music.
 - 2) Input Sensitivity: Compatible with master stations and central equipment so amplifier delivers full rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on master stations speaker microphones, or handset transmitters
 - Automatic Level Control (ALC) for pages, adjustable background music muting level during page, wall or rack mountable.
 - 16-ohm, 25V, 25V center tapped (CT), and 70V outputs. Amplifier quantity and size (output power) as needed. Continuous amplifier power rating shall exceed loudspeaker load on amplifier by at least 25%.
 - 5) Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus an allowance for future stations.
 - 6) Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to quantity of stations connected in all-call mode of operation.
 - 7) Minimum Signal-to-Noise Ratio: 45 dB, at rated output.
 - Frequency Response: Within plus or minus 3 dB from 70 to 12,000 Hz.

- b) Output Regulation: Maintains output level within 2 dB from full to no load.
- c) Amplifier Protection: Prevents damage from shorted or open output.
- d) Be provided with electronic supervision function(s).
- e) Provide one spare amplifier.
- b. TCR:
 - 1) Microphone Paging Console:
 - a) A console shall be provided in the TCR and PCR's as shown on the drawings.
 - b) The console shall contain visual enunciators for each connection to the telephone system's Public Address Paging Adapter. The visual enunciators shall display all the System connections to the telephone system being used.
 - c) The console shall be fully independent of the Facility's telephone system so if the telephone system has a catastrophic failure (aka partial, multiple or total system failure) the microphone console will function normally as if the Facility's telephone system was operating normally. The restoration of the Facility's telephone system shall not affect the System.
 - d) Each microphone console shall:
 - Be Mounted: Flush unless otherwise indicated, and suitable for mounting conditions indicated.
 - Have a Faceplate: Stainless steel or anodized aluminum with tamperproof mounting screws.
 - Have a system interface Back Box: Minimum Two-gang galvanized steel with 2-1/2 inch minimum depth.
 - Have an Internal Speaker: 3 inches, 2.3 oz. minimum; permanent magnet.
 - 5) Have a Call Switch: Mount on faceplate. Permits calls to The system.
 - 6) When approved in lieu of a standalone microphone, provide a Handset with Hook Switch: Have a Handset with Hook Switch: Telephone type with 24-inch-long,

permanently coiled cord. Arrange to disconnect speaker when handset is lifted.

- Be provided with an electrical supervision panel to provide both audio and visual trouble alarms to the Nurse Call /Code Blue electrical supervision system.
- 8) Be capable of internal time out capability.
- Be completely compatible with the Telephone Interface unit(s)
- 2) Electrical Supervision Trouble Annunciator Panel:
 - a) The Electrical Supervision Trouble Annunciation Panel shall be located in the TCR and PCR's SCC.
 - b) The panel(s) shall be compatible with the generated electrical and/or electronic supervising signals to continuously monitor the operating condition for the PA system head-end processing equipment, local/remote control consoles, audio power amplifier(s), UPS, power supplies, dome lights and interconnecting trunks. The panels shall generate an audible and visual signal when the System's supervising system detects a system trouble or trunk-line is malfunctioning.
 - c) TRs: Locate the PA floor distribution equipment within each TR as required by system design and OEM direction. Provide secured and lockable cabinet/rack(s) as required.
 - General Equipment: Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system listed herein. Equipment components may be rack mounted or wall mounted in a metal enclosure.
- 2) Amplifiers:
 - a) Panging Amplifier Equipment:
 - b) Refer to the Amplifier characteristics described herein Paragraph 2.4.G.f.
 - c) Provide one (1) spare amplifier in addition to the spare Head End Amplifier.
- 3) Distributed Amplifier:

- a) Provide the type and number of the amplifier(S) required to meet the system design. Provide this unit as complete and separate technical submittal during the IFB review portion of the project.
- b) Provide one spare amplifier for each 20% (or portion thereof) of amplifiers used in the system.
- 4) Provide the equipment in the nearest TER where the System is installed to include the minimum equipment listed herein.
- 5) Provide minimum of 30 minute battery (UPS) back-up to system components.
- Equipment Cabinet: Comply with cabinet requirements as aforementioned.
- 7) Trouble Annunciator Panel: Comply with the panel characteristics identified herein.
- d. SCC, PCR, STR, HER: Refer to PG-18-10, Article 7 for specific required equipment and use minimum aforementioned specifications for population.

D. TIP DISTRIBUTION SYSTEM:

- 1. System Speakers:
 - a. Ceiling Cone-Type:
 - 1) Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.
 - 2) Frequency Response: Within plus or minus 3 dB from 70 to 15,000 Hz.
 - 3) Minimum Dispersion Angle: 100 degrees.
 - Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
 - 5) Enclosures: Steel housings or back boxes, acoustically dampened, with front face of at least 0.0478-inch steel and whole assembly rust proofed and factory primed; complete with mounting assembly and suitable for surface ceiling, flush ceiling, pendant or wall mounting; with relief of back pressure.
 - 6) Baffle: For flush speakers, minimum thickness of 0.032-inch aluminum with textured white finish. Completely fill the baffle with fiberglass.

- 7) Vandal-Proof, High-Strength Baffle: For flush-mounted speakers, self-aging cast aluminum with tensile strength of 44,000 psi, 0.025-inch minimum thickness; countersunk heattreated alloy mounting screws; and textured white epoxy finish.
- Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
- 9) Have a minimum of two (2) safety wires installed to a solid surface or use a flexible conduit from ceiling / wall back box to the speaker back box.
- 10) The speakers and mounting shall be self contained and wall mounted with flush back box at a minimum of 10 meter intervals and shall match (or contrast with, at the direction of the RE) the color of the adjacent surfaces.
- Provide one spare speaker, mount, and back box for each 50 speakers or portion thereof.
- b. Wall Mounted Horne-Type:
 - Each horn speaker shall be provided with a means of adjusting the output level over the rated horn speaker range to an appropriate audio level in the area installed.
 - Provide horn speakers in equipment rooms, mechanical room, supply warehouse areas, loading dock, entrance and exit areas, and at other areas as indicated on the drawings.
 - Speakers shall be all-metal, weatherproof construction; complete with universal mounting brackets.
 - 4) Frequency Response: Within plus or minus 3 dB from 275 to 14,000 Hz.
 - 5) Minimum Power Rating of Driver: 15 W, continuous.
 - 6) Minimum Dispersion Angle: 110 degrees.
 - Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
 - Provide one spare speaker, mount, and back box for each 20 speakers or portion thereof.
- c. System Cables: In addition to the TIP provided under Specification Section 27 15 00 - TIP Horizontal and Vertical Communications Cabling, provide the following additional TIP

installation and testing requirements, provide the following
minimum System TIP cables & interconnections:

1) Line Level Audio and Microphone Cable:

- a) Line level audio and microphone cable for inside racks and conduit.
- b) Shielded, twisted pair Minimum 22 American Wire Gauge (AWG), stranded conductors and 24 AWG drain wire with overall jacket.
- 2) Speaker Level (Audio 70.7Volt) Cable, Riser Rated:
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
 - c) UL-1333 listed.
- 3) Speaker Level Audio Cable, Plenum Rated (70.7V):
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
- 4) All cabling shall be riser plenum rated.
- Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.
- 2. Raceways, Back Boxes and conduit:
 - a. Raceways:
 - In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:
 - 2) Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
 - Intercommunication System cable infrastructure: EMT or in Jhooks above accessible ceilings, 24 inches on center.
 - Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.

27 51 16-30

- 5) Flexible metal conduit is prohibited unless specifically approved by 0050P3B.
- b. System Conduit:
 - The PA system is NFPA listed as Emergency / Public Safety Communication System which requires the entire system to be installed in a separate conduit system.
 - The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (0050P3B).
 - 3) Conduit Sleeves:
 - a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.
 - b) While the sleeves shown on the drawings will be provided by others, the contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nursecall cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.
- 3. Device Back Boxes:
 - a. Furnish to the electrical contractor all back boxes required for the PA system devices.
 - b. The electrical contractor shall install the back boxes as well as the system conduit. Coordinate the delivery of the back boxes with the construction schedule.
- 4. Telecommunication Outlets (TCO): Populate each TCO that is required to perform system operations in the locations that were provided and cabled as a part of Specifications Sections 27 11 00 and 27 15 00. Provide additional TCO equipment, interfaces and connections as required by System design. Provide secured pathway(s) and TCOs as required.
- 5. UPS:

- a. Provide a backup battery or a UPS for the System to allow normal operation and function (as if there was no AC power failure) in the event of an AC power failure or during input power fluctuations for a minimum of four (4) hours.
- b. As an alternate solution, the telephone system UPS may be utilized to meet this requirement at the headend location, as long as this function is specifically approved by the Telephone Contractor and the RE.
- c. The PA Contractor shall not make any attachments or connection to the telephone system until specifically directed to do so, in writing, by the RE.
- d. Provide UPS for all active system components including but not limited to:
 - 1) System Amplifiers.
 - 2) Microphone Consoles.
 - 3) Telephone Interface Units.
 - 4) TER, TR & Headend Equipment Rack(s).
- Ε.
- F. Installation Kit:
 - 1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.

- b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields.
 - 2) Control Cable Shields.
 - 3) Data Cable Shields.
 - 4) Equipment Racks.
 - 5) Equipment Cabinets.
 - 6) Conduits.
 - 7) Duct.
 - 8) Cable Trays.
 - 9) Power Panels.
 - 10) Connector Panels.
 - 11) Grounding Blocks.
- 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to

completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT

- A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.
- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P3B) at (301) 734-0350 to have a VA Certified Telecommunications COR assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and OCIS Teams.

3.2 COORDINATION WITH OTHER TRADES

- A. Coordinate with the cabling contractor the location of the PA system faceplate and the faceplate opening for the PA system back boxes.
- B. Coordinate with the cabling contractor the location of TIP equipment in the TER, TCR, PA, PCR, SCC, ECR, STRs, NSs, HER and TCOs in order to connect to the TIP cable network that was installed as a part of Section Specification 27 11 00. Contact the RE immediately, in writing, if additional location(s) are discovered to be activated that was not previously provided.
- C. Before beginning work, verify the location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems.
 - 2. Junction boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for the systems.
 - 3. System components installed by others.
 - 4. Overhead supports and rigging hardware installed by others.
- D. Immediately notify the Owner, GC and Consultant(s) in writing of any discrepancies

3.3 NEEDS ASSESSMENT

Provide a one-on-one meeting with the particular manager of each unit affected by the installation of the new PA system. Review the floor plan drawing, educate the nursing manager with the functions of the equipment that is being provided and gather details specific to the individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that will affect system programming and training.

3.4 INSTALLATION

A. General

- Execute work in accordance with National, State and local codes, regulations and ordinances.
- 2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
- 3. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
- Secure equipment firmly in place, including receptacles, speakers, equipment racks, system cables, etc.
 - All supports, mounts, fasteners, attachments and attachment points shall support their loads with a safety factor of at least 5:1.
 - b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
 - d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Locate overhead ceiling-mounted loudspeakers as shown on drawings, with minor changes not to exceed 12" in any direction.

- a. Mount transformers securely to speaker brackets or enclosures using screws. Adjust torsion springs as needed to securely support speaker assembly.
- b. Speaker back boxes shall be completely filled with fiberglass insulation.
- c. Seal cone speakers to their enclosures to prevent air passing from one side of the speaker to the other.
- Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and 0050P3B.
- 7. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.
- Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone and data equipment, systems, and service.
- 9. Color code all distribution wiring to conform to the PA Industry Standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.
- 10.Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 11. Product Delivery, Storage and Handling:
 - a. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.

- b. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- 12.Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 13.Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- B. Equipment Racks:
 - Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks.
 - Provide security covers for all devices not requiring routine operator control.
 - 3. Provide vent panels and cooling fans as required for the operation of equipment within the OEM' specified temperature limits. Provide adequate ventilation space between equipment for cooling. Follow manufacturer's recommendations regarding ventilation space between amplifiers.
 - 4. Provide insulated connections of the electrical raceway to equipment racks.
 - 5. Provide continuous raceway/conduit with no more than 40% fill between wire troughs and equipment racks for all non-plenum-rated cable. Ensure each system is mechanically separated from each other in the wireway.
 - 6. Ensure a minimum of 36 inches around each cabinet and/or rack to comply with OSHA Safety Standards. Cabinets and/or Racks installed side by side - the 36" rule applies to around the entire assembly
- C. Distribution Frames.
 - 1. A new stand-alone (i.e., self supporting, free standing) PA rack/frame may be provided in each TR to interconnect the PA, TER, TCR, PCR, SCC, STRs & ECRs. Rack/frames shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The PA riser cable shall be sized to satisfy all voice/digital requirements plus not less than 50% spare (growth) capacity in each TR which includes a fiber optic backbone.
 - 2. The frames/racks shall be connected to the $\ensuremath{\mathtt{TER}}\xspace/{\mathtt{MCR}}$ system ground.
- D. Wiring Practice in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP

Structured Communications Cabling, 27 11 00 - TIP Communications Rooms Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered too:

- Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
- Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
- 3. Wiring shall be classified according to the following low voltage signal types:
 - Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
 - b. 70V audio speaker level audio.
 - c. Low voltage DC control or power (less than 48VDC)
- 4. Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches. Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.
- 5. Do not splice wiring anywhere along the entire length of the run. Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
- Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
- Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
- Use wire pulling lubricants and pulling tensions as recommended by the OEM.
- 9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 10.Do not use tape-based or glue-based cable anchors.

- 11.Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
- 12.Field wiring entering equipment racks shall be terminated as follows:
 - a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.
 - b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.") Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
 - c. If specified terminal blocks are not designed for rack mounting, utilize ¾" plywood or 1/8" thick aluminum plates/blank panels as a mounting surface. Do not mount on the bottom of the rack.
 - d. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.
- 13.Use only balanced audio circuits unless noted otherwise
- 14.Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 15.Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.

- d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 16.Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- 17.Wires or cables **previously approved** to be installed outside of conduit, cable trays, wireways, cable duct, etc:
 - a. Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - b. Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - c. Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - d. Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
 - Completely test all of the cables after installation and replace any defective cables.
 - f. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet

protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.

- E. Cable Installation In addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 -Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling and the following additional practices shall be adhered too:
 - Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable tray, j-hooks, and bridal rings. Velcro wrap cable bundles loosely to the means of support with plenum rated Velcro straps. Plastic tie wraps are not acceptable as a means to bundle cables.
 - 2. Run cables parallel to walls.
 - 3. Install maximum of 10 cables in a single row of J-hooks. Provide necessary rows of J-hooks as required by the number of cables.
 - Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
 - 5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.
 - Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
 - Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
 - Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.

- 9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
- 10.Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 11.Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- 12.Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 13.Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.
- 14.Serve all cables as follows:
 - a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heatshrink and serve as indicated below.
 - b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing ¼" past the end of unused wires, fold back over jacket and secure with cable tie.
 - c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.
- F. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for PA circuits shall be stenciled using laser printers.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."
 - 2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment
shall be labeled on the face of the unit corresponding to its source.

- a. Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
- b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
- c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
- 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
- 4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."
- 5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
- 6. Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heatshrink tubing covering the end of the overall jacket. Alternatively, computer generated labels of the type which include a clear protective wrap may be used.
- 7. Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
- 8. Ensure each OEM supplied item of equipment has appropriate UL Labels / Marks for the service the equipment is performed permanently attached / marked. SYSTEM EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.

- G. Conduit and Signal Ducts: When the Contractor and/or OEM determines additional system conduits and/or signal ducts are required in order to meet the system minimum performance standards outlined herein, the contractor shall provide these items as follows:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weather heads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed.
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow PA cables to be installed in partitioned cable tray with voice cables may be granted in writing by the RE if requested). Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 - c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - d. When "interduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - e. Conduit fill (including GFE approved to be used in the system) shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power

conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.

- f. Ensure that Critical Care PA Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use GFE signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.
 - d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible

3.5 PROTECTION OF NETWORK DEVICES

A. Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved electrostatic discharge (ESD) wrist straps tied to chassis ground. The wrist strap shall meet OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.6 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated

as provided by others to complete the Work or to make its parts fit together properly.

- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor's consent to cutting or otherwise altering the Work.
- E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the location shall be approved by the Project Manager prior to commencement of coring work.

3.7 FIREPROOFING

- A. Where PA wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.
- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.
- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.
- D. Install fireproofing where low voltage cables are installed in the same manholes with high voltage cables; also cover the low voltage cables with arc proof and fireproof tape.
- E. Use approved fireproofing tape of the same type as used for the high voltage cables, and apply the tape in a single layer, one-half lapped or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (one inch) into each duct.

27 51 16-46 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

F. Secure the tape in place by a random wrap of glass cloth tape.

3.8 GROUNDING

- A. Ground PA cable shields and equipment to eliminate shock hazard and to minimize ground loops, common mode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26
 Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.
- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use "3rd or 4th" wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.
- H. Insure grounds of different systems are installed as to not violate OSHA Safety and NEC installation requirements for protection of personnel.

PART 4 - TESTING / GUARANTY / TRAINING

4.0 SYSTEM LISTING

The PA System is NFPA listed as an "Emergency / Public Safety" Communications system. Where Code Blue signals are transmitted, that listing is elevated to "Life Support/Safety." Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and OEM.

4.1 PROOF OF PERFORMANCE TESTING

- A. Intermediate Testing:
 - After completion of 25 30% the installation of a head end cabinet(s) and equipment, one microphone console, local and remote enunciation stations, two (2) zones, two (2) sub zones prior to any

27 51 16-47

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

further work, this portion of the system must be pretested, inspected, and certified. Each item of installed equipment shall be checked to ensure appropriate UL Listing and Certification Labels are affixed as required by NFPA -Life Safety Code 101-3.2 (a) & (b) and JCHCO evaluation guidelines, and proper installation practices are followed. The intermediate test shall include a full operational test.

- 2. All inspections and tests shall be conducted by an OEM-certified contractor representative and witnessed by TVE-0050P3B if there is no local Government Representative that processes OEM and VA approved Credentials to inspect and certify the system. The results of the inspection will be officially recorded by the Government Representative and maintained on file by the RE, until completion of the entire project. The results will be compared to the Acceptance Test results. An identical inspection may be conducted between the 65 75% of the system construction phase, at the direction of the RE.
- B. Pretesting:
 - Upon completing installation of the PA System, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.
 - 2. Pretesting Procedure:
 - a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all PA System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, each of the following locations shall be fully pretested:
 - 1) Central Control Cabinets.
 - 2) Local Control Stations.
 - 3) Zone Equipment/Systems.
 - 4) Sub-Zone Equipment/Systems.
 - 5) Remote Control Panels.

27 51 16-48

a.)TCR.

b.)PCR/SCC.

- 6) All Networked locations.
- 7) System interface locations (i.e. TELCO, two way radio, etc.).
- 8) System trouble reporting.
- 9) System Electrical Supervision.
- 10) UPS operation.
- 11)STRs.
- 12)NSs
- 13) TCOs.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- C. Acceptance Test:
 - 1. After the PA System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 day's written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of TVE 0050P3B and an OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Emergency / Public Safety compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
 - 2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System.

27 51 16-49

Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable. Retesting of the entire System shall be rescheduled at the convenience of the Government.

- Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.
- D. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. The TVE 0050P3B Representative will tour all areas where the PA system and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
 - b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.
 - c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.
 - 2. Operational Test:
 - a. After the Physical and Mechanical Inspection, the system head end equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
 - b. Following the head end equipment test, each speaker (or on board speaker) shall be inspected to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
 - c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last speaker in each leg to verify the PA distribution system meets all system performance standards.
 - d. If the RED system is a part of the system, each volume stepper switches shall be checked to insure proper operation of the

27 51 16-50

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

pillow speaker, the volume stepper and the RED system (if installed).

- e. Additionally, each installed head end equipment, microphone console; amplifier, mixer, distributed speaker/amplifier, monitor speaker, telephone interface, power supply and remote amplifiers shall be checked insuring they meet the requirements of this specification.
- f. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully operating system. The typical functions are: "all call," three sub-zoned, minimum of 15 minutes of UPS operation, electrical supervision, trouble panel, corridor speakers and audio paging.
- h. Individual Item Test: The TVE 0050P3B Representative will select individual items of equipment for detailed proof of performance testing until 100% of the System has been tested and found to meet the contents of this specification. Each item shall meet or exceed the minimum requirements of this document.
- 3. Test Conclusion:
 - a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the RE. Any retesting to comply with these specifications will be done at the Contractor's expense.
 - b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.
- E. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - 1. Spectrum Analyzer.
 - 2. Signal Level Meter.
 - 3. Volt-Ohm Meter.
 - 4. Sound Pressure Level (SPL) Meter.
 - 5. Oscilloscope.

- 6. Random Noise Generator.
- 7. Audio Amplifier with External Speaker.

4.2 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:
- B. Contractor's Responsibility:
 - The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of two (2) years from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
 - 3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the two year guaranty period:
 - a. Response Time During the **Two Year** Guaranty Period:
 - The RE (or Facility Contracting Officer if the system has been turned over to the Facility) is the Contractor's ONLY OFFICIAL reporting and contact official for nurse call system trouble calls, during the guaranty period.
 - 2) A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by the RE (or Facility Contracting Officer), Monday through Friday exclusive of Federal Holidays.
 - The Contractor shall respond and correct on-site trouble calls, during the standard work week to:

27 51 16-52 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

- a) A routine trouble call within one (1) working day of its report. A routine trouble is considered a trouble which causes a power supply; one (1) master System control station, microphone console or amplifier to be inoperable.
- b) Routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as an emergency trouble call. The RE (or Facility Contracting Officer) shall notify the Contractor of this type of trouble call.
- c) An emergency trouble call within four (4) hours of its report. An emergency trouble is considered a trouble which causes a sub-zone, zone, distribution point, terminal cabinet, or all call system to be inoperable at anytime.
- 4) If a PA System component failure cannot be corrected within four (4) hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate System equipment. The alternate equipment/system shall be operational within a maximum of 12 hours after the four (4) hour trouble shooting time and restore the effected location operation to meet the System performance standards. If any sub-system or major system trouble cannot be corrected within one working day, the Contractor shall furnish and install compatible substitute equipment returning the System or subsystem to full operational capability, as described herein, until repairs are complete.

b. Required On-Site Visits During the Two Year Guaranty Period

- The Contractor shall visit, on-site, for a minimum of eight

 hours, once every 12 weeks, during the guaranty period, to
 perform system preventive maintenance, equipment cleaning, and
 operational adjustments to maintain the System according the
 descriptions identified in this document.
- The Contractor shall arrange all Facility visits with the RE (or Facility Contracting Officer) prior to performing the required maintenance visits.
- 3) Preventive maintenance procedure(s)shall be performed by the Contractor in accordance with the OEM's recommended practice

27 51 16-53

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

and service intervals during non-busy time agreed to by the RE (or Facility Contracting Officer) and Contractor.

- The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE (or Facility Contracting Officer).
- 5) The Contractor shall provide the RE (or Facility Contracting Officer) a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Acceptance Test. The following reports are the minimum required:
 - a) The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to RE (or Facility Contracting Officer) by the fifth (5th) working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance.
 - b) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 6) The RE (or Facility Contracting Officer) shall convey to the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The RE (or Facility Contracting Officer) shall ensure a copy of these reports is entered into the System's official acquisition documents.
 - b) The Facility Chief Engineer shall ensure a copy of these reports is entered into the System's official technical record documents.

27 51 16-54

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor, contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render an official opinion in writing concerning the supplied information.

4.3 TRAINING

- A. Provide thorough training of all biomed engineering and electronic technical staff assigned to those nursing units receiving new networked nurse/patient communications equipment. This training shall be developed and implemented to address two different types of staff. Floor nurses/staff shall receive training from their perspective, and likewise, unit secretaries (or any person whose specific responsibilities include answering patient calls and dispatching staff) shall receive operational training from their perspective. A separate training room will be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of the new system.
- B. Provide the following minimum training times and durations:
 - 48 hours prior to opening for BME / Electronic Staff (in 8-hour increments) - split evenly over 3 weeks and day and night shifts. Coordinate schedule with Owner.
 - 32 hours during the opening week for Telephone Staff both day and night shifts.
 - 3. 24 hours for supervisors and system administrators.

- - - E N D - - -

SECTION 27 51 23 INTERCOMMUNICATIONS AND PROGRAM SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies a new and fully operating Intercom (IC) System.
- B. Conform to VAAR 852.236.91 and intent of the construction documents, recognizing that it may be impracticable to detail all items because of variances in manufacturers to achieve indicated intent.

1.2 RELATED WORK

- A. Connection to Electronic Access Control at doors: Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEM.
- B. Door hardware and operation of doors: 08 71 00 DOOR HARDWARE
- C. Conduit and boxes: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Electrical conductors and cables: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- E. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- F. Requirements for interfacing with Facility's SMS: Section 28 31 00, PHYSICAL ACCESS CONTROL SYSTEM.

1.3 SUBMITTALS

- A. In addition to requirements of SECTION 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit:
 - Written certification from OEM proposed provider of contract maintenance is an authorized representative of OEM. Include provider's legal name, address, and OEM credentials.
 - Submit names, locations and point of contact for three installations employing proposed OEM IC Systems of comparable size and complexity performing for at least one year after final acceptance by user.
- B. Certifications:
 - Submit documentation that supplier has been an authorized distributor and service organization for OEM for a minimum of three years and is authorized by OEM to pass thru OEM's warranty of installed equipment to Government.

- Submit certificate of successful completion of OEM's installation and training program for each installing technician of equipment being proposed. Provide current OEM certifications for installers to be approved by COR before being allowed to commence work on system.
- Provide current OEM certification documenting maintenance and supervisory personnel are authorized by OEM to service installed equipment during warranty.
- 4. Furnish copies of applicable national, state and local licenses.
- C. Warranty: Submit OEM warranty.
- D. Needs Assessment Report: Provide a summary report of the needs assessment meeting conducted with nursing manager of each unit, as required by this section.
- E. Maintenance Material Submission:
 - Provide one spare 304 m (1,000 foot) roll of accepted system (not microphone) cable.

1.4 QUALITY ASSURANCE

- A. Assign only technicians trained, qualified, and certified by OEM on engineering, installation, operation and testing of system.
- B. Provide system firmware from OEM with a proven history of product reliability and sole control over all source code.

1.5 WARRANTY

- A. Comply with FAR clause 52.246-21, except that warranty must be as follows:
 - Manufacturer shall warranty their equipment and certified installation for a minimum of two years from date of installation and final acceptance by the Government.
 - Provide, free of charge, product firmware and software upgrades for a period of one year from date of final acceptance by Government for any product feature enhancements.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Provide voice communication between wall-mounted intercom stations and desk or wall-mounted master stations.
- B. Provide accessories and miscellaneous appurtenances required for a complete and operating communications system and network.

- C. Coordinate features and select components to form an integrated IC system. Match components and interconnections for optimum performance of specified functions.
- D. Expansion Capability: Increase number of Room Speaker-Microphone stations in future by 25 percent above those indicated without adding any internal or external components or trunk cable conductors.
- E. Equipment: Modular type, continuous duty rated.
- F. Weather-Resistant Equipment: Listed by a National Recognized Testing Laboratory (NRTL) for operation in wet, damp or outdoor locations.
- G. Install IC head end equipment in room 116 and connect each window at the Reception Area, Room 105A.

2.2 PERFORMANCE CRITERIA

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, the minimum requirements for each system are:
 - Wired IC systems approved to connect to separate communications system (i.e. SMS, WAN, LAN includes: Telephone, Nurse Call, radio paging, wireless systems) minimum requirements:

 a. NIST FIPS Pub 140/2.
 - b. UL 60950-1, edition 2.
 - 2. IEC 62368-1 ed 2: 2014.
 - 3. Code of Federal Regulations, Title 47, Part 15 (or FCC Part 15) Listed Radio Equipment is not permitted.
- B. Provide system with configuration programming capable of being executed remotely via a remote connection (when specifically accepted by Spectrum Management and COMSEC Services (SMCS 0050P2H3) without any exchange of parts.

2.3 EQUIPMENT ITEMS

- A. Manually Switched System:
 - 1. Master Station Features:
 - a. Communicate with individual stations in privacy.
 - 2. Room Speaker-Microphone Station Features:
 - a. Communicate hands free.
 - 3. Speakers: Free of noise and distortion during operation and when in standby mode.
- B. Microprocessor-Switched System:

- 1. Master Station Features:
 - a. Communicate selectively with other speaker-microphone station.
 - b. Communicate with individual stations in privacy.
 - c. Volume Control: Regulate incoming-call volume.
 - d. LED: Identify calling stations and stations in use. Remains illuminated until call is answered.
 - e. Momentary audible tone signal: Announce incoming calls.
 - f. Reset Control: Cancels call and resets system for next call.
 - g. Equipment Cabinet:
 - 1) Comply with EIA/ECA 310-E Cabinets, and Associated Equipment Standard.
 - 2) Lockable.
 - 3) Ventilated metal cabinet houses terminal strips, power supplies, amplifiers, system volume control, and other switching and control devices required for conversation channels and control functions.
 - a)
- 2. Room Speaker-Microphone Station Features:
 - a. Communicate hands free.
 - b. Free of noise and distortion during operation and when in standby mode.

2.4 HEAD END EQUIPMENT

- A. Provide required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system.
- B. Head end components can be wall mounted in a metal enclosure.
- C. Provide minimum 30 minute battery back-up (or UPS) to system components.

2.5 SYSTEM CABLES

- A. Comply with SECTION 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING for specific installation and testing requirements.
- B. Conductors: Jacketed, twisted pair and twisted multipair, untinned solid copper; sizes as recommended by system manufacturer, but no smaller than No. 22 AWG.
- C. Insulation: Thermoplastic; minimum 0.8 mm (1/32 inch) thick.

- D. Shielding: For speaker-microphone leads and elsewhere where recommended by manufacturer; No. 34 AWG, tinned, soft-copper strands formed into a braid or equivalent foil.
- E. Minimum Shielding Coverage on Conductors: 60 percent.
- F. Cabling must be riser rated.

2.6 RACEWAYS

- A. Raceways and Boxes: Comply with requirements in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- B. Each open top raceway must be NRTL listed for telecommunications systems and partitioned with metal partitions in order to comply with NEC Parts 517 and 800 to "mechanically separate" telecommunications systems of different service, protect installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
- C. IC System Cable Infrastructure: EMT and cable tray NRTL classified for suitability and NRTL listed for telecommunications.
- D. Pull boxes must be minimum 63.5 mm (2-1/2 inches) deep and 152.4 mm (6 inches) wide by 152.4 (6 inches) long.

2.7 SYSTEM CONDUIT

A. Provide separate 25.4 mm (1 inch) minimum diameter conduit, for system installation.

2.8 UNINTERRUPTIBLE POWER SUPPLY (UPS)

- A. Provide UPS for system to allow normal operation and function (as if there was no AC power failure) in event of an AC power failure or during input power fluctuations for a minimum of 30 minutes.
- B. As an alternative solution, telephone system UPS can be utilized to meet this requirement at head-end location, as long as this function is specifically accepted by telephone contractor and COR.
 - Do not make any attachments or connection to telephone system until specifically directed to do so, in writing, by COR.
- C. Provide UPS for active system components including:
 - 1. System Amplifiers.
 - 2. Microphone Consoles.
 - 3. System Interface Units.
 - 4. Head End Equipment Racks.
 - 5. Control Consoles.

2.9 FINISHES

A. Provide finishes for exposed work such as plates, racks, panels, speakers, etc. accepted by design professional, COR and 0050P3B.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Review and coordinate with telecommunications cabling installer for location of intercom equipment in Telecommunications Rooms.
- B. Verification of Conditions: Before beginning work, verify location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems.
 - 2. Pull boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for systems.
 - 3. System components installed by others.
 - 4. Overhead supports and rigging hardware installed by others.
- C. Installer must immediately notify COR, general contractor and design professional in writing of any discrepancies.
- D. Needs Assessment:
 - Provide a one-on-one meeting with nursing manager of each unit affected by installation of system.
 - Review floor plans and drawings, educate nursing manager on functions of the equipment and gather details specific to individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that affect system programming and training.
 - 3. Prepare a summary report of the assessment.

3.2 INSTALLATION

- A. General:
 - Install work plumb and square and in a manner consistent with standard industry practice.
 - Protect work from dust, paint and moisture as dictated by site conditions. Contractor is responsible for protection of work until final acceptance by Government.
 - 3. Install equipment according to OEM's recommendations.
 - Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for complete assembly and installation.

- 5. Secure equipment firmly in place, including IC stations, speakers, equipment racks, system cables, etc.:
 - a. Supports, mounts, fasteners, attachments and attachment points must support loads with a safety factor of at least 5:1.
 - b. Do not impose weight of equipment on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by OEM for overhead suspension.
 - d. Contractor is responsible for means and methods in design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Coordinate cover plates with field conditions. Size and install cover plates to hide joints between back boxes and surrounding wall. Do not allow cable to leave or enter boxes without cover plates installed.
- 7. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required.
- B. Wiring Practice: In addition to requirements in Section 27 10 00, STRUCTURED CABLING, adhere to the following additional practices:
 - Execute wiring in strict adherence to National Electrical Code, applicable local building codes and standard industry practices.
 - 2. Where raceway and wire way are EMT (conduit), wiring of differing classifications must be run in separate conduit.
 - 3. Where raceway and wire way are an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share same enclosure must be mechanically partitioned and separated by 102 mm (four inches). Where wiring of differing classifications must cross, they must cross perpendicular to one another.
 - 4. Do not splice wiring anywhere along entire length of run.
 - 5. Make sure cables are insulated and shielded from each other and from raceway for entire length of run.
 - Do not pull wire through any enclosure where a change of raceway alignment or direction occurs.
 - 7. Do not bend wires to less than radius recommended by manufacturer.

- Replace entire length of run of any wire or cable that is damaged or abraded during installation. There are no acceptable methods of repairing damaged or abraded wiring.
- 9. Do not apply wire pulling lubricants unless specifically recommended by cable OEM.
- 10. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 11. Do not use tape-based or glue-based cable anchors.
- 12. Bond shields and drain wires to ground.
- 13. Use only balanced audio circuits unless indicated otherwise.
- 14. Make connections as follows:
 - a. Use rosin-core solder or mechanical connectors appropriate to application.
 - b. For crimp-type connections, use only crimp tool specified by manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs must be sized to fit wire gauge; do not exceed two lugs per terminal.
 - d. Twist on wire connectors and electrical tape are not permitted for any application.
- C. Cable Installation: In addition to requirements in Section 27 10 00, STRUCTURED CABLING, comply to the following practices.
 - Acceptable means of cable support are cable tray, wire way, and conduit. Hook and loop wrap cable bundles loosely to cable tray with plenum rated Velcro straps. Plastic tie wraps are not permitted as a means to bundle or support cables.
 - 2. Run cables parallel to walls.
 - 3. Do not lay cables on top of luminaires, ceiling tiles, mechanical equipment, or ductwork.
 - 4. Maintain minimum 61 cm (2'-0'') clearance from all shielded electrical apparatus.
 - 5. Test cables after the total installation is complete. Document test results. Remedy any cabling problems or defects in order to pass or comply with testing. This includes re-pull of new cable as required.
 - Terminate both ends of cables per industry and OEM's recommendations.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- 7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until ready to terminate.
- Cover end of overall jacket with minimum 25.4 mm (1 inch) length of transparent heat-shrink tubing.
 - a. Cut unused insulated conductors minimum 50.8 mm (2 inches) passed heat-shrink, fold back over jacket and secure with cable-tie.
 - b. Cut unused shield/drain wires minimum 50.8 mm (2 inches) passed heat-shrink cover shield/drain wires with heat-shrink tubing extending to overall jacket. Extend tubing 6 mm (1/4 inch) passed end of unused wires, fold back over jacket and secure with cable tie.
- 9. For each solder-type connection, cover bare wire and solder connection with heat-shrink tubing.
- Terminate conductors; no cable must contain unterminated elements. Make terminations only at outlets and terminals.
- 11. Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables cannot be spliced.
- 12. Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- Cold-Weather Installation: Bring cable to room temperature before de-reeling. Heat lamps are not permitted.
- 14. Cable must not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 15. Separation of Wires: (Refer to Raceway Installation)
 - a. Separate speaker-microphone, line-level, speaker-level, and power wiring runs.
 - b. Install in separate raceways or, where exposed or in same enclosure, separate conductors at minimum 30.5 cm (12 inches) apart for speaker microphones and adjacent parallel power and telephone wiring.
 - c. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

- D. System Conduit: Install manufactured conduit sweeps and long radius elbows according to wire and cable OEM instructions.
- E. Labeling:
 - Permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - Engrave and paint fill receptacle panels using minimum 3.17 mm (1/8 inch) high lettering and contrasting paint.
 - 3. For rack-mounted equipment, use engraved Lamacoid labels with white minimum 3.17 mm (1/8 inch) high lettering on black background. Label front and back of rack-mounted equipment.
 - Where multiple pieces of equipment reside in same rack group, label each indicating to which room, channel, receptacle location, etc. they correspond.
 - 5. Permanently label cables at each end, including intra-rack connections. Labels must be covered by same, transparent heat-shrink tubing covering end of overall jacket. Alternatively, provide computer generated labels of type which include a clear protective wrap.
 - Contractor's name cannot appear more than once on each continuous set of racks. Contractor's name cannot appear on wall plates or portable equipment.
 - 7. Ensure each piece of OEM supplied equipment has appropriate NRTL labels for the service equipment is performing. Equipment installed not bearing NRTL label will not be permitted. Contractor is responsible to provide listed replacement equipment with approved NRTL label.
- F. Protection during Installation:
 - Protect electronic devices during unpacking and installation by wearing electrostatic discharge (ESD) wrist straps tied to chassis ground.
 - Wrist straps must meet OSHA requirements for prevention of electrical shock, if technician comes in contact with high voltage.
- G. Cutting and Patching:
 - Keep work area clear of debris and clean area daily at completion of work.

- 2. Patch and paint any wall or surface that has been disturbed by execution of this work.
- Provide any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete work or to make its parts fit together properly.
- 4. Do not damage or endanger fully or partially completed construction of Government or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. Contractor cannot cut or otherwise alter such construction by facility or separate contractor except with written consent of Government or of such separate contractor; such consent cannot be unreasonably withheld. Contractor cannot unreasonably withhold consent to cutting or otherwise altering work, by facility or a separate contractor.
- 5. Where coring of in-place concrete is specified or required, including coring indicated under unit prices, location of such coring must be identified in the field and accepted by COR prior to commencement of coring work.
- H. Fireproofing:
 - Fireproof openings where IC cables penetrate fire rated walls, floors and ceilings.
 - 2. Provide conduit sleeves (if not already provided) for cables that penetrate fire rated walls and floors and ceilings. After cabling installation is complete, install fire proofing material in and around conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal floor and ceiling penetrations.
 - 3. Use only materials and methods that preserve integrity of fire stopping system and its rating.
- I. Grounding:
 - Provide grounding system per Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
 - Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common mode returns, noise pickup, cross talk, and other impairments.
 - Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.

- 4. Install grounding electrodes as specified in Section 27 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 5. Do not use "3rd or 4th" wire internal electrical system conductors for ground.
- Do not connect system ground to building's external lightning protection system.
- 7. Do not "mix grounds" of different systems.

3.3 FIELD QUALITY CONTROL

- A. Assign only technicians trained, qualified, and certified by OEM on engineering, installation, operation, and testing of system.
- B. Performance Testing:
 - 1. Intermediate Testing:
 - a. After completion of 25 percent of installation of equipment, including one master station, and remote station, and prior to any further work, this portion of system must be pretested, inspected, and certified. Check each item of installed equipment to ensure appropriate NRTL labels are affixed, NFPA, Life Safety, and Joint Commission guidelines are followed, and proper installation practices are followed. Include a full operational test.
 - b. Arrange for inspection and test conducted by a factory-certified representative to be witnessed by Government and SMCS 0050P2H3 at a minimum and COR. An identical inspection can be conducted between 65 and 75 percent of system construction phase, at direction of COR.
 - 2. Pretesting:
 - a. Upon completing installation of system:
 - Align, balance, and completely pretest entire system under full operating conditions.
 - Verify (utilizing approved test equipment) system is operational and meets performance requirements of this standard.
 - 3) Verify that system functions are operational, and no unwanted aural effects, (e.g. signal distortion, noise pulses, glitches, audio hum, poling noise, etc.) are present. At a minimum, pretest each of the following locations:

27 51 23 - 12 INTERCOMMUNICATIONS AND PROGRAM SYSTEMS

- a) Networked locations.
- b) System trouble reporting.
- c) System electrical supervision.
- d) UPS operation.
- b. Provide recorded system pretest measurements and written certification that system is ready for formal acceptance test to COR.
- 3. Acceptance Test:
 - a. Schedule acceptance test date giving COR 30 days' written notice prior to date acceptance test is expected to begin. System must be tested in the presence of a Government representative and OEMcertified representative. System must be tested utilizing approved test equipment to certify proof of performance and emergency compliance. Test must verify that the total system meets specification requirements. Notification of acceptance test must include expected duration of time of the test.
- 4. Acceptance Test Procedure:
 - a. Physical and Mechanical Inspection:
 - Government representative may tour areas where system and subsystems are completely and properly installed to ensure they are operationally ready for proof of performance testing.
 Prepare system inventory including available spare parts. Each item of installed equipment must be checked to ensure appropriate NRTL labels are affixed.
 - System diagrams, record drawings, equipment manuals, Auto CAD Disks, intermediate, and pretest results must be inventoried and reviewed.
 - Failure of system to meet installation requirements of this specification can be grounds for terminating all testing.
 - b. Operational Test:
 - Contractor must demonstrate full functionality of system including:
 - a) Station to master calls.
 - b) Station to station calls.
 - c) Broadcast calls.

- d) Location identification of stations at intercom master station.
- c. Test Conclusion: Government will accept results of the test or require additional testing on deficiencies and shortages. Retesting to comply with these specifications must be done at Government's convenience and contractor's expense.

3.4 TRAINING

- A. Provide training of facility-identified staff assigned to units receiving communications by an IC system. Implement training from master console operator's perspective, and likewise, for any person whose specific responsibilities include answering IC calls and dispatching an appropriate response, provide operational training from their perspective. A separate training room may be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of new system.
- B. Provide the following minimum training times and durations:
 - 1. 4 hours prior to facility opening,
 - 2. 4 hours during the standard work week, and
 - 3. 4 hours for supervisors and system administrators.

3.5 MAINTENANCE

- A. Provide Government personnel with ability to contact contractor and OEM for maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time, during warranty period.
- B. Response Time during Warranty Period:
 - COR is contractor's only official reporting and contact official for IC system trouble calls, during the warranty period.
 - A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by COR, Monday through Friday exclusive of Federal holidays.
 - Respond and correct on-site trouble calls, during the standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes one IC station, or master IC station to be inoperable.
 - b. An emergency trouble call within four hours of its report.

- An emergency trouble is considered a trouble which causes a IC sub system or equipment cabinet, to be inoperable at any time.
- Emergency trouble calls include routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.). COR must notify contractor of this type of trouble call.
- If an IC component failure cannot be corrected within four hours (exclusive of the standard work time limits), provide alternate IC equipment.
- 5. Complete installation of alternate equipment/system within sixteen hours after the four hour trouble shooting time and restore operation of effected location to system performance standards.
- Replace any sub-system or major system that cannot be corrected within one working day, with compatible temporary equipment returning system or sub-system to full operational capability, until repairs are complete.

- - - E N D - - -

SECTION 27 52 23 NURSE CALL AND CODE BLUE SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system warranty, training and services for, and incidental to, the complete installation of new and fully operating National Fire Protection Association (NFPA) - Life Safety Code 101.3-2 (a) Labeled and (b) Listed, Emergency Service Nurse-Call and/or Life Safety listed Code Blue Communication System and associated equipment (here-in-after referred to as the System) provided in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting Nurse-Call and/or Code Blue communications signals generated local and remotely as detailed herein.
- B. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 0050P3B) tested, certified and ready for operation.
- C. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- D. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, tested, and warranty by the Contractor.
- E. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE. *HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS,* SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's Project Manager (PM), Resident Engineer (RE) and TVE-0050P3B. The VA PM is the only approving authority for

other amendments to this document that may be granted, on a case by case basis, in writhing with technical concurrencies by VA's PM, RE, TVE-0050P3B and identified Facility Project Personnel.

F. The Original Equipment Manufacturer (OEM) and Contractor shall ensure <u>that all</u> management, sales, engineering and installation personnel have read and understand the requirements of this specification <u>before</u> the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement stating this requirement as a part of the technical submittal that includes each name and certification, including the OEMs. The Contractor is cautioned to obtain <u>in writing</u>, <u>all approvals for system changes relating to the published contract</u> <u>specifications and drawings, from the PM and/or the RE before</u> <u>proceeding with the change</u>.

1.2 RELATED SECTIONS

- A. 01 33 23 Shop Drawings, Product Data and Samples.
- B. 07 84 00 Firestopping.
- C. 26 05 19 Low Voltage Electrical Power Conductors and Cables (600
 Volts and Below).
- D. 27 05 11 Requirements for Communications Installations.
- E. 27 05 26 Grounding and Bonding for Communications Systems.
- F. 27 05 33 Raceways and Boxes for Communications Systems.
- G. 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING.
- H. 27 41 31 / 41 Master Antenna Television Equipment and Systems and/or Extension.
- I. 27 51 16 Public Address & Mass Notification System (PA).

1.3 DEFINITION

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and warranty.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

D. Headquarters (aka VACO) Technical Review, for National and VA Communications and Security, Codes, Frequency Licensing Standards, Guidelines and Compliance:

> Office of Telecommunications Special Communications Team (0050P3B) 1335 East West Highway - 3rd Floor Silver Spring, Maryland 20910, (0) 301-734-0350, (F) 301-734-0360

E. Contractor: Systems Contractor; you; successful bidder.

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards, including, but not limited to:
 - 1. United States Federal Law:
 - a. Departments of:
 - Commerce, Consolidated Federal Regulations (CFR), Title 15 Under the Information Technology Management Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines that are developed by the:
 - a) Chapter II, National Institute of Standards Technology (NIST - formerly the National Bureau of Standards). Under Section 5131 of the Information Technology Management Reform Act of 1996 and the Federal Information Security Management Act of 2002 (Public Law 107-347), NIST develops - Federal Information Processing Standards Publication (FIPS) 140-2-Security Requirements for Cryptographic Modules.
 - b) Chapter XXIII, National Telecommunications and Information Administration (NTIA - aka 'Red Book') Chapter 7.8 / 9;
 CFR, Title 47 Federal communications Commission (FCC) Part 15, Radio Frequency Restriction of Use and Compliance in "Safety of Life" Functions & Locations.
 - 2) FCC Communications Act of 1934, as amended, CFR, Title 47 -Telecommunications, in addition to Part 15 - Restrictions of use for Part 15 listed Radio Equipment in Safety of Life /

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

Emergency Functions / Equipment/ Locations (also see CFR, Title 15 - Department of Commerce, Chapter XXIII - NTIA):

- a) Part 15 Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/Locations.
- b) Part 58 Television Broadcast Service.
- c) Part 90 Rules and Regulations, Appendix C.
- 3) Health, (Public Law 96-88), CFR, Title 42, Chapter IV Health & Human Services, CFR, Title 46, Subpart 1395(a)(b) JCAHO "a hospital that meets JCAHO accreditation is deemed to meet the Medicare conditions of Participation by meeting Federal Directives:"
 - a) All guidelines for Life, Personal and Public Safety; and, Essential and Emergency Communications.
- 4) Labor, CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standard:
 - a) Subpart 7 Definition and requirements (for a NRTL 15 Laboratory's, for complete list, contact

(http://www.osha.gov/dts/otpca/nrtl/faq nrtl.html):

- 1) UL:
 - a) 44-02 Standard for Thermoset-Insulated Wires and Cables.
 - b) 65 Standard for Wired Cabinets.
 - c) 83-03 Standard for Thermoplastic-Insulated Wires and Cables.
 - d) 467-01 Standard for Electrical Grounding and Bonding Equipment
 - e) 468 Standard for Grounding and Bonding Equipment.
 - f) 486A-01 Standard for Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - g) 486C-02 Standard for Splicing Wire Connectors.
 - h) 486D-02 Standard for Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations.
 - i) 486E-00 Standard for Equipment Wiring Terminals for

Use with Aluminum and/or Copper Conductors.

- j) 493-01 Standard for Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable.
- k) 514B-02 Standard for Fittings for Cable and Conduit.
- 1) 1069 Hospital Signaling and Nurse Call Equipment.
- m) 1449 Standard for Transient Voltage Surge Suppressors.
- n) 1479-03 Standard for Fire Tests of Through-Penetration Fire Stops.
- o) 1666 Standard for Wire/Cable Vertical (Riser) Tray Flame Tests.
- p) 1863 Standard for Safety, Communications Circuits Accessories.
- q) 2024 Standard for Optical Fiber Raceways.
- r) 60950-1/2 Information Technology Equipment -Safety.
- Canadian Standards Association (CSA): same tests as for UL.

3) Communications Certifications Laboratory (CCL): same tests

- as for UL.
- Intertek Testing Services NA, Inc. (ITSNA formerly Edison Testing Laboratory [ETL]): same tests as for UL.
- b) Subpart 35 Compliance with NFPA 101 Life Safety Code.
- c) Subpart 36 Design and construction requirements for exit routes.
- d) Subpart 268 Telecommunications.
- e) Subpart 305 Wiring methods, components, and equipment for general use.
- 5) Department of Transportation, CFR, Title 49 (Public Law 89-670), Part 1, Subpart C - Federal Aviation Administration (FAA):
 - a) Standards AC 110/460-ID & AC 707 / 460-2E Advisory Circulars for Construction of Antenna Towers.
 - b) Forms 7450 and 7460-2 Antenna Construction Registration.

27 52 23 **-** 5

NURSE CALL AND CODE BLUE SYSTEMS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- 6) Veterans Affairs (Public Law No. 100-527), CFR, Title 38, Volumes I & II:
 - a) Office of Telecommunications:
 - 1) Handbook 6100 Telecommunications.
 - a) Spectrum Management FCC & NTIA Radio Frequency Compliance and Licensing Program.
 - b) Special Communications Proof of Performance Testing, VACO Compliance and Life Safety Certification(s).
 - b) Office of Cyber and Information Security (OCIS):
 - 1) Handbook 6500 Information Security Program.
 - Wireless and Handheld Device Security Guideline Version
 3.2, August 15, 2005.
 - c) VA's National Center for Patient Safety Veterans Health Administration Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
 - d) VA's Center for Engineering Occupational Safety and Health, concurrence with warning identified in VA Directive 7700.
 - e) Office of Construction and Facilities Management (CFM):
 - 1) Master Construction Specifications (PG-18-1).
 - 2) Standard Detail and CAD Standards (PG-18-4).
 - 3) Equipment Guide List (PG-18-5).
 - Electrical Design Manual for VA Facilities (PG 18-10), Articles 7 & 8.
 - 5) Minimum Requirements of A/E Submissions (PG 18-15):
 - a) Volume B, Major New Facilities, Major Additions; and Major Renovations, Article VI, Paragraph B.
 - b) Volume C Minor and NRM Projects, Article III, Paragraph S.
 - c) Volume E Request for Proposals Design/Build Projects, Article II, Paragraph F.
 - Mission Critical Facilities Design Manual (Final Draft -2007).
 - Life Safety Protected Design Manual (Final Draft -2007).
 - 8) Solicitation for Offerors (SFO) for Lease Based Clinics
-(05-2009).

- b. Federal Specifications (Fed. Specs.):
 - A-A-59544-00 Cable and Wire, Electrical (Power, Fixed Installation).
- 2. National Codes:
 - American Institute of Architects (AIA): Guidelines for Healthcare Facilities.
 - b. American National Standards Institute/Electronic Industries
 Association/Telecommunications Industry Association
 (ANSI/EIA/TIA):
 - 568-B Commercial Building Telecommunications Wiring Standards:
 - a) B-1 General Requirements.
 - b) B-2 Balanced twisted-pair cable systems.
 - c) B-3 Fiber optic cable systems.
 - 569 Commercial Building Standard for Telecommunications Pathways and Spaces.
 - 606 Administration Standard for the Telecommunications Infrastructure of Communications Buildings.
 - 607 Commercial Building Grounding and Bonding Requirements for Telecommunications.
 - 5) REC 127-49 Power Supplies.
 - RS 270 Tools, Crimping, Solderless Wiring Devices, Recommended Procedures for User Certification.
 - c. American Society of Mechanical Engineers (ASME):
 - 1) Standard 17.4 Guide for Emergency Personnel.
 - 2) Standard 17.5 Elevator & Escalator Equipment (prohibition of installing non-elevator equipment in Elevator Equipment Room / Mechanical Penthouse).
 - d. American Society of Testing Material (ASTM):
 - D2301-04 Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape.
 - e. Building Industries Communications Services Installation (BICSI):
 - All standards for smart building wiring, connections and devices for commercial and medical facilities.
 - 2) Structured Building Cable Topologies.

3) In consort with ANSI/EIA/TIA.

- f. Institute of Electrical and Electronics Engineers (IEEE):
 - SO/TR 21730:2007 Use of mobile wireless communication and computing technology in healthcare facilities -Recommendations for electromagnetic compatibility (management of unintentional electromagnetic interference) with medical devices.
 - 2) 0739-5175/08/©2008 IEEE Medical Grade Mission Critical Wireless Networks.
 - 3) C62.41 Surge Voltages in Low-Voltage AC Power Circuits.
- g. NFPA:
 - 70 National Electrical Code (current date of issue) -Articles 517, 645 & 800.
 - 75 Standard for Protection of Electronic Computer Data-Processing Equipment.
 - 3) 77 Recommended Practice on Static Electricity.
 - 4) 99 Healthcare Facilities.
 - 5) 101 Life Safety Code.
- 3. State Hospital Code(s).
- 4. Local Town, City and/or County Codes.
- 5. Accreditation Organization(s):
 - a. Joint Commission on Accreditation of Hospitals Organization
 (JCAHO) Section VI, Part 3a Operating Features.

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of Nurse Call systems of comparable size and interfacing complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete

27 52 23 - 8 NURSE CALL AND CODE BLUE SYSTEMS responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.

- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.
- E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's Nurse Call and/or Code Blue equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested, certified and approved by VA and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.

1.7 SCHEDULING

- A. After the award of contract, the Contractor shall prepare a detailed schedule (aka milestone chart) using "Microsoft Project" software or equivalent. The Contractor Project Schedule (CPS) shall indicate detailed activities for the projected life of the project. The CPS shall consist of detailed activities and their restraining relationships. It will also detail manpower usage throughout the project.
- B. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS (AKA TECHNICAL SUBMITTALS)

- (Note: The Contractor is encouraged, but not required, to submit separate technical submittal(s) outlining alternate technical approach(s) to the system requirements stated here-in as long as each alternate technical document(s) is complete, separate, and submitted in precisely the same manner as outlined herein. VA will review and rate each received alternate submittal, which follows this requirement, in exactly the same procedure as outlined herein. Partial, add-on, or addenda type alternates will not be accepted or reviewed.)
- A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
- B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.
- C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.
- D. Provide four (4) copies to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).
- E. Provide interconnection methods, conduit (where not already installed), junction boxes (J-Boxes), cable, interface fixtures and equipment lists for the: TER, Nurses Stations (NS), Head End Room (HER), Head End Cabinet (HEC), Head End Interface Cabinet (HEIC) and approved TCO locations TIP interface distribution layout drawing, as they are to be installed and interconnected to teach other (REFER TO APPENDIX B -SUGGESTED TELECOMMUNICATIONS ONE LINE TOPOLOGY pull-out drawing).

- F. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- G. Engineering drawings of the System, showing calculated of expected signal levels at the headend input and output, each input and output distribution point, and signal level at each telecommunications outlet.
- H. Surveys Required as a Part of The Technical Submittal:
 - 1. The Contractor shall provide the following System surveys that depict various system features and capacities required <u>in addition</u> <u>to</u> the on-site survey requirements described herein (see Specification Paragraph 2.4.3). Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal Survey requirements), as a minimum:
 - a. Nurse Call Cable System Design Plan:
 - 1) An OEM and contractor designed functioning Nurse Call System cable plan to populate the entire TIP empty conduit/pathway distribution systems provided as a part of Specification 27 11 00 shall be provided as a part of the technical proposal. A specific functioning Nurse Call: cable, interfaces, J-boxes and back boxes shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems' entire Nurse Call cable and accessory requirements and engineer a functioning Nurse Call distribution system and equipment requirement plan of the following paragraph(s), at a minimum:
 - 2) The required Nurse Call and/or Code Blue Equipment Locations: As indicated on the Drawings. 3) The required Nurse Call and/or Code Blue Cable Plant/Connections: The Contractor shall clearly and fully indicate this category for each item identified herein as a part of the technical submittal. For this purpose, the following definitions and sample connections are provided to detail the system's capability:

EQUIPPED ITEM	CAPACITY	GROWTH
Central Control Cabinet/Equipment		
Location		

EQUIPPED ITEM	CAPACITY	GROWTH
Power Supply(s)		
UPS(s)		
Essential Electrical Power Panel(s)		
Other		
Cable Plant		
Supply to Locations Identified in Paragraph 1.8.H.1.a.2)		
Remote Locations		
Telephone Operator Room		
Police Control Room		
Other		
Maintenance/Program Console		
Location(s)		
Other		
LAN (Local Facility) Access/Equipment/Location (when pre- approved by TVE-0050P3B)		
Wireless Access/Equipment/Location (when pre-approved by TVE-0050P3B)		
PA Access/Equipment/Location (when pre- approved by TVE-0050P3B)		
Other		

1.9 PROJECT RECORD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floorplans shall be marked in pen to include the following:
 - 1. Each device specific locations with UL labels affixed.
 - 2. Conduit locations.
 - 3. Each interface and equipment specific location.
 - 4. Head-end equipment and specific location.
 - 5. Wiring diagram.
 - 6. Labeling and administration documentation.
 - 7. Warranty certificate.
 - 8. System test results.

1.10 WARRANTIES / GUARANTY

- A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.
- B. The Contractor shall agree to grantee the system according to the guidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

- A. Use of the site shall be at the GC's direction.
- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.
- D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 - 1. OEM Equipment Warranty Certificates.
 - 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that is a part of the system.

27 52 23 - 13 NURSE CALL AND CODE BLUE SYSTEMS

- 5. System Guaranty Certificate.
- C. Contractor shall submit written notice that:
 - 1. Contract Documents have been reviewed.
 - 2. Project has been inspected for compliance with contract.
 - 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS

2.0 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

- A. Furnish and install a complete and fully functional and operable Nurse Call System for each location shown on the contract drawings and TCOs WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS A PART OF SPECIFICATION 27 11 00.
- B. The specific location for each Nurse Call item is as indicated on the Drawings.
- C. Coordinate features and select interface components to form an integrated Nurse Call system. Match components and interconnections between the systems for optimum performance of specified functions.
- D. Expansion Capability: The Nurse Call equipment interfaces and cables shall be able to increase number of enunciation points in the future by a minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.
- E. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz supplied from the Facility's Emergency Electrical Power System.
- F. Meet all FCC requirements regarding equipment listing, low radiation and/or interference of RF signal(s). The system shall be designed to prevent direct pickup of signals from within and outside the building structure.
- G. Weather/Water Proof Equipment: Listed and labeled by an OSHA certified NRTL (i.e. UL) for duty outdoors or in damp locations.

2.1 SYSTEM DESCRIPTION

A. Furnish and install a complete and fully functional and operable Nurse
 Call and/or Code Blue System WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS
 A PART OF SPECIFICATION 27 11 00.

- B. The Contractor is responsible for interfacing the PA and MATV systems with the System.
- C. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection, but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The interface point must adhere to all standards described herein for the full separation of Critical Care and Life Safety systems.
- D. The System Contractor shall connect the System ensuring that all NFPA and UL Critical Care and Life Safety Circuit and System separation guidelines are satisfied. The System Contractor is not allowed to make any connections to the Telephone System. VA shall arrange for the interconnection between the PA and MATV Systems with the appropriate responsible parties.
- E. System hardware shall consist of a standalone (separate) nurse call Code Blue patient communications network comprised of nurse consoles, control stations, staff and duty stations, room and corridor dome lights, pillow speakers/call cords, pull cord and/or emergency push button stations, wiring. And, other options such as, pocket page interfaces, computer interfaces, printer interfaces, wireless / telephone network interfaces, and nurse locating system interface (when specifically approved first by TVE 0050P3B) and as shown on drawings. All necessary equipment required to meet the intent of these specifications, whether or not enumerated within these specifications, shall be supplied and installed to provide a complete and operating nurse call Code Blue patient communications network. It is not acceptable to utilize the telephone cable system for the control and distribution of nurse call (code Blue) signals and equipment.
- F. System firmware shall be the product of a reputable firmware OEM of record with a proven history of product reliability and sole control over all source code. Manufacturer shall provide, free of charge, product firmware/software upgrades for a period of two (2) years from date of acceptance by VA for any product feature enhancements. System configuration programming changes shall not require any exchange of

parts and shall be capable of being executed remotely via a modem connection (when specifically approved first by TVE 0050P3B).

- G. The Nurse Call Head End Equipment shall be located in Telecommunications Room 116 . The Nurse Call / Code Blue System may interface the PA system when specifically approved by VA Headquarters T VE 0050P3B during the project approval process prior to contract bidding.
- H. The System shall utilize microprocessor components for all signaling and programming circuits and functions. Self-contained or on-board system program memory shall be non-volatile and protected from erasure from power outages for a minimum of 12 hours.
- I. Provide a backup battery or a UPS for the System (including each distribution cabinet/point, CRT and Monitor) to allow normal operation and function (as if there was no AC power failure) in the event of an AC power failure or during input power fluctuations for a minimum of 30 minutes.
- J. The System is defined as Critical Service and the Code Blue functions is defined as Life Safety/Support by NFPA (re Part 1.1.A) and so evaluated by JCAHCO. Therefore, the system shall have a minimum of two (2) additional remote enunciation points in order to satisfy NFPA's Life Safety Code 101 (the typical secondary locations are Telephone Operators Room, MAS ER Desk, Boiler Plant, etc; AND the primary location is required to be in the SCC Room.
 - These two (2) additional remote locations shall be fully manned:
 a. 24/7/365 for certified Hospital Clinics.
 - b. As long as other identified VA Medical / Servicing Facilities are open for servicing patients.
 - c. The minimum remote enunciation locations shall be:
 - 1) The Telephone / PBX Operator Room.
 - 2) The Police Control / Operations Room.
 - 3) Other location(s) that is specifically approved by VA Headquarters TVE - 0050P3B DURING THE PROJECT DEVELOPMENT STAGES AND PRIOR TO EQUIPMENT PURCHASE.
 - 2. In addition to the two (2) remote locations afore described, the following locations are the minimum required for additional Nurse Call /Code Blue Annunciation:

- a. "On Call" Rooms.
- b. Each Nurse Master Station.
- c. Each Staff Station.
- d. Each Duty Station.
- 3. The MAXIMUM enunciation time period from placement of the Code Blue Call to enunciation at each remote locations is 10 seconds; and, 15 seconds to the subsequent enunciating media stations (i.e. PA, Radio Paging, Emergency Telephone or Radio Backup, etc.).
- K. Each Code Blue System shall be designed to provide continuous electrical supervision of the complete and entire system (i.e. dome light bulbs each light will be considered supervised if they use any one or a combination of (UL) approved electrical supervision alternates, as identified in UL-1069, 1992 revision, wires, contact switch connections, circuit boards, data, audio, and communication busses, main and UPS power, etc.). All alarm initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and UPS power circuits shall be supervised for a change in state (i.e. primary to backup, low battery, UPS on line, etc.). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the nurse control station and all remote locations.
- L. When the System is approved to connect to a separate communications system (i.e. LAN, WAN, Telephone, Public Address, radio raging, wireless systems, etc) the connection point shall meet the following minimum requirements for each hard wired / wireless connection (note each wireless system connection MUST BE APPROVED PRIOR TO CONTRACT BID BY VA HEADQUARTERS TVE - 0050P3B AND SPECTRUM MANAGEMENT - 0050P2B hereinafter referred to as SM - 0050P2B):
 - 1. UL 60950-1/2.
 - 2. FIPS 142.
 - 3. FCC Part 15 Listed Radio Equipment restriction compliance approved by SM 0050P2B.
- M. All passive distribution equipment shall meet or exceed -80 dB radiation shielding (aka RFI) shielding specifications and be provided with connectors specified by the OEM.

- N. All equipment face plates utilized in the system shall be stainless steel, anodized aluminum or UL approved cycolac plastic for the areas where provided.
- O. Noise filters and surge protectors shall be provided for each equipment interface cabinet, headend cabinet, control console and local and remote amplifier locations to insure protection from input primary AC power surges and to insure noise glitches are not induced into low voltage data circuits.
- P. Plug-in connectors shall be provided to connect all equipment, except coaxial cables. Coaxial cable distribution points shall use coaxial cable connections recommended by the cable OEM and approved by the system OEM. Base band cable systems shall utilize barrier terminal screw type connectors, at a minimum. As an alternate, crimp type connectors installed with a ratchet type installation tool are acceptable provided the cable dress, pairs, shielding, grounding, connections and labeling are the same as the barrier terminal strip connectors. Tape of any type, wire nuts or solder type connections are unacceptable and will not be approved.
- Q. Audio Level Processing: The control equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each sub-zone in the system and distribute them into the System's RF interfacing distribution trunks and amplification circuits. It is acceptable to use identified Telephone System cable pairs designated for Two-Way Radio interface and control use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor. The use of telephone cable to distribute RF signals, carrying system or sub-system AC or DC voltage is not acceptable and will not be approved. Additionally, each control location shall be provided with the equipment required to insure the system can produce its designed audio channel capacity at each speaker identified on the contract drawings. The Contractor shall provide: a spare set of telephone paging modules as recommended by the OEM (as a minimum provide one spare module for each installed module); one spare audio power amplifier, one spare audio mixer, one spare audio volume limiter

and/or compressor, and one spare audio automatic gain adjusting device, and minimum RF equipment recommended by the OEM.

- R. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. Unless otherwise noted in this Part, equipment quantities shall be as indicated on the drawings.
- S. System Performance:
 - At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's Nurse Call and/or Code Blue System voice and data service as follows:
 - a. Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal Telecommunications System (FTS) at each PSTN and FTS interface (if attachment is permitted by TVE 0050P3B), interconnection and TCO terminating locations detailed on the contract drawings.
 - b. The System shall provide the following minimum operational functions:
 - Code Blue calls shall be cancelable at the calling station only. The nurse call master station (s) that a managing Code Blue functions shall not have the ability to cancel Code Blue calls.
 - Each Code Blue system shall be able to receive audio calls from all bedside stations simultaneously.
 - 3) Calls placed from any Code Blue station shall generate Code Blue emergency type audible and visual signals at each associated nurse control and duty station, respective dome lights and all local and remote annunciator panels. Calls placed from a bedside station shall generate emergency type visual signals at the bedside station and associated dome light(s) in addition to the previous stated stations and panels.
 - Activating the silencing device at any location, while a Code Blue call or system fault is occurring shall mute the audible signals at the alarm location.

- a) The audible alarm shall regenerate at the end of the selected time-out period until the call or fault is corrected.
- b) The visual signals shall continue until the call is canceled and/or a fault is corrected. When the fault is corrected, all signals generated by the fault shall automatically cease, returning the System to a standby status.
- c) Audible signals shall be regenerated in any local or remote annunciator panel that is in the silence mode, in the event an additional Code Blue call is placed in any Code Blue system.
- d) The additional Code Blue call shall also generate visual signals at all annunciators to identify the location of the call.
- Each System Nurse Call location shall generate a minimum of distinct calls:
 - a. Routine: single flashing dome lights & master station color and audio tone,
 - b. Staff Assist: rapid flashing dome lights & master station color and audio tone,
 - c. Emergency: Red flashing done lights & master station color and audio tone,
 - d. Code Blue (if equipped): Blue flashing dome lights and master station color and audio tone,
 - e. Each generated call shall be cancelable at ONLY the originating location,
 - f. Staff Locator: Green Flashing dome lights & master station color and audio tone, and

2.3 MANUFACTURERS

- A. The products specified shall be new, FCC and UL Listed, labeled and produced by OEM manufacturer of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,

- Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
- 3. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.
- C. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as Critical Service performing various Emergency and Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - All supplies and materials shall be listed, labeled or certified by UL or a NRTL where such standards have been established for the supplies, materials or equipment.
 - 3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
 - 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.4 PRODUCTS

- A. General.
 - Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
 - 2. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.

Item			Quantity	Unit
1.	As	required	Interface Panel(s)	
1.a	As	required	Electrical Supervision	
		1	Trouble Enunciator	
1.a.1	As	required	Equipment Back Box(s)	
1.b	As	required	Telephone	
1.c	As	required	Public Address	
1.d	As	required	Radio Paging / Equipment	t
1.e	As	required	Wireless / Equipment	
1.f.	As	required	Radio Pager / Equipment	
1.g	As	required	Wireless / Equipment	
1.f	As	required	Personal Communicator /	
			Equipment	
2.	As	required	Lightning Arrestor	
3.	As	required	Head End Equipment/Loca	tions
3.a	As	required	Cabinet(s)	
3.a.1	As	required	AC Power Conditioner &	Filter
3.a.2	As	required	AC Power Strip	
3.a.3	As	required	UPS	
3.a.4	As	required	Interconnecting Wire/Cal	oles
3.a.5	As	required	Wire / Cable Connector(s)
3.a.6	As	required	Wire / Cable Terminator	(s)
3.b	As	required	Wire Management System	
3.b	As	required	Head End Function(s)	
3.b.1	As	required	H7 Interface	
3.b.2	As	required	Nurse Locator	
3.b.3	As	required	Staff Locator	
4.	As	required	Master Station(s)	
4.a	As	required	Nurse Locator	
4.b	As	required	Staff Locator	
5.	As	required	Distribution System(s)	
5.a	As	required	Staff Station	

5.a.1	As required	Equipment Back Box(s)
5.b	As required	Duty Station
5.b.1	As required	Equipment Back Box(s)
5.c	As required	Code Blue Station
5.c.1	As required	Equipment Back Box(s)
5.c.2	2 (MIN)	Remote Station(s)
5.d	As required	Patient Station(s)
5.d.1	As required	Equipment Back Box(s)
5.d.2	As required	Bed Interface(s)
5.d.3	As required	Pillow Speaker
5.d.4	As required	Push Button Cordset
5.d.5	As required	Dummy Plugs
5.d.6	As required	Bed Integrated Control
5.d.7	As required	Lighting Interface Module
5.d.8	As required	TV Control Interface
5.d.9	As required	TV Control Jack
5.d.10	As required	TV Interconnection Cables
5.d.11	As required	HDTV Coaxial
5.d.12	As required	HDTV/Nurses Call Interface/
		Control
5.d.13	As required	Auxiliary Mounting Interface
5.e	As required	Emergency Station(s)
5.e.1	As required	Equipment Back Box(s)
5.e.2	As required	Toilet Emergency Station
		(waterproof)
5.e.3	As required	Shower Emergency Station
		(waterproof)
5.e.4	As required	Lavatory Emergency Station
		(waterproof)
5.f.	As required	Room Dome Light
5.f.1	As required	Equipment Back Box(s)
5.g	As required	Other Dome Light(s)
5.g.1	As required	Equipment Back Box(s)
5.g.2	As required	Corridor Dome Light
5.g.3	As required	Intersectional Dome Light
5.h	As required	System Cable(s)
5.h.1	As required	Coaxial
5.h.2	As required	System Pin
5.h.3	As required	Audio
5.h.4	As required	Control
5.h.5	As required	Video
5.i	As required	System Connector(s)
5.i.1	As required	Coaxial
5.i.2	As required	System Pin
5.i.2	As required	Audio
5.i.3	As required	Control
5.i.4	As required	Video
5.j	As required	Wire Management Required as described herein

B. NS Room(s):

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.C. TER, SCC, PCR, STR, HER Rooms and Equipment:

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.

- D. Telecommunications Room(s) (TR):
 - Locate the Nurse Call and/or Code Blue floor distribution equipment as required by system design and OEM direction. Provide secured and lockable cabinet/rack(s) as required.
 - 2. Head-End Equipment:
 - a. Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system. Head-end components may be rack mounted or wall mounted in an enclosed metal enclosure.
 - b. Provide the head end equipment in the closest Telecommunications Room where the System is installed.
 - c. Provide the System UPS inside the cabinet or in a separate cabinet adjacent to the head end cabinet that shall maintain a minimum of 30 minute battery back-up to all system components.
 - d. Equipment Cabinet: Comply with TIA/EIA-310-D. Lockable, ventilated metal cabinet houses terminal strips, power supplies, amplifiers, system volume control, and other switching and control devices required for conversation channels and control functions. See Paragraph 2.5.E for the Cabinet's minimum internal items that are in addition to the installed System equipment.
 - e. Vertical Equipment Rack, Wall Mounted (to be included inside of the Equipment Cabinet) containing the following minimum items:
 - 36" (28RU) internal rack space, welded steel construction, minimum 20" usable depth, adjustable front mounting rails.
 - Install the following products in rack provided by same manufacturer or as specified:

27 52 23 - 24 NURSE CALL AND CODE BLUE SYSTEMS

- a) Security screws w/ nylon isolation bushings.
- b) Textured blank panels.
- c) Custom mounts for components without rack mount kits.
- d) Security covers.
- e) Internal system ground copper buss (may be substituted with a bare #0 AWG copper wire or equivalent size copper mesh strip connected to ONLY THE FACILITY'S SIGNAL GROUNDING SYSTEM.
- f) Power Sequencer- rack-mounted power conditioner and (provide as-needed) delayed sequencer(s) with (2) unswitched outlets each and contact closure control inputs. Connect the conditioner to one of the dual duplex outlets.
- g) Two (2) each 120VAC @ 20A dual duplex outlets, connected via conduit to the nearest Electrical Service Panel that is supplied by the Facility's Essential Electrical System.
- h) One (1) each 120VAC @ 15A Power Distribution Strip(s).Connect each strip to the unstitched outlet on the power conditioner.
- 3. HL7 Interface:
 - a. The system may support downloading and updating of patient data from the hospital admission system (or other database) via the HL7 standard. The data only has to travel one way, i.e. from the admission system to the nurse-call system.
 - b. Coordinate with the Owner the exact fields that will be populated from the admissions system in the nurse-call system.
 - c. The Facility's LAN/WAN is not allowed for Nurses Call/Code Blue main wiring / function that must be a "stand alone primary cable infrastructure" as described herein.
 - d. Connections to the VA LAN/WAN for functional or operable conditions will be allowed ONLY when the LAN/WAN system has been demonstrated and NFPA (at a minimum by TVE-0050P3B) Certified meeting Life Safety Standards.
 - e. Provide one (1) spare HL Interface unit.
- F. TIP Cable Systems:

Connect the system to the TIP system provided as a part of Speciation Section 27 15 00. Provide additional TIP equipment, interfaces and connections as required by System design. Provide secured pathway(s) and lockable cabinet/rack(s) as required.

- G. Interface Equipment:
 - 1. TCR:
 - a. Code Blue Annunciation Station:
 - 1) The Code Blue Remote Annunciation Station shall be located in the Telephone Operators Room, Police Control Center.
 - 2) The Annunciation Station shall be connected to the System via hard wire connection(s) that shall contain all the electrical supervisory tone signals, visual bulbs, read out panel to indicate the location of the Code and system troubles.
 - 3) The System shall not be connected to the Telephone system unless specifically APPROVED BY VA HEADQUARTERS (0050P3B) and (0050P2B) PRIOR TO CONTRACT BID.
 - 4) The Annunciation Station shall be installed in a location directly viewable and the readout is completely readable from the Public Address Microphone Control Console.
 - 5) Provide one (1) spare panel.
 - b. Electrical Supervision Trouble Annunciator Panel:
 - The Electrical Supervision Trouble Annunciation Panel shall be located in the Telephone Operators Room, Police Control Center, associate Nurses Station(s).
 - 2) The panel(s) shall be compatible with the generated electrical and/or electronic supervising signals to continuously monitor the operating condition for the System head-end processing equipment, master stations, staff stations, patient stations, duty stations, audio power amplifier(s), UPS, power supplies, dome lights and interconnecting trunks. The panels shall generate an audible and visual signal when the System's supervising system detects a system and equipment trouble or trunk-line is malfunctioning.
 - 3) Provide one (1) spare panel.
 - 2. Hospital Bed Interface (s):
 - a. Provide a multi-pin receptacle for bed connection.

- b. Connect cable from the multi-pin receptacle to the nurse-call system, so that alarms, such as bed exit, shall be monitored by the nurse-call system.
- c. Connect cable from the multi-pin receptacle to the nurse-call system, so that the bedside control buttons, such as nurse call, and television controls are functional and monitored.
- d. The hospital uses the following beds:
 - 1) Hill Rom
 - 2) Stryker
 - 3) Other
- e. Provide one (1) spare interface for each ten (10) interfaces installed.
- 3. Nurse (aka Staff) Locator Interface:
 - a. The System must be capable of performing nurse-locator functions.
 - b. The System must be capable of performing staff-locator functions
 - c. These functions may be combined into one operation.
 - d. Provide two (2) spare interfaces.
- 4. Lighting Interface Module:
 - a. Provide an interface module for the pillow speakers to control up to 2 lights. Coordinate with the electrical contractor the exact voltage requirements.
 - b. Provide one (1) spare module for each ten (10) modules installed.
- 5. Pillow Speaker Interfaces:
 - a. See functional requirements herein.
 - b. Provide (1) pillow speaker for each patient station.
 - c. Provide one (1) spare pillow speaker for each twenty (20) speakers installed.
- 6. TV Remote Control Interface:
 - a. The pillow speaker shall have the following TV control capability:
 - 1) Play the TV audio through the pillow speaker.
 - 2) Change channels up and down.
 - 3) Increase and decrease the volume.
 - 4) TV audio mute.
 - 5) UL Certified for direct patient contact.
 - b. Provide one (1) spare interface for each 20 interfaces installed.

- 7. TV Control Jack and Wiring:
 - a. Provide connection from the pillow speaker to the TV location.
 Terminate wire on a jack in the TV low voltage faceplate.
 Coordinate faceplate opening with the cabling contractor.
 Coordinate jack type with the TV (typically it is a ¼" jack, but verify prior to installation).
 - b. Provide patch cord from the TV control jack to the TV.
 - c. Provide one (1) spare complete assembly for each twenty (20) assemblies installed.
- H. Call Initiation, Annunciation and Response:
 - 1. Light and Tones:
 - a Calls may be initiated through:
 - 1) Patient station.
 - 2) Staff station.
 - 3) Code Blue station.
 - 4) Toilet Emergency Station pull cord / push button.
 - 5) Shower Emergency Station pull cord.
 - 6) Bed Pillow speaker.
 - 7) Bed Push-button cordset.
 - 8) Hospital Bed Integrated controls.
 - b Once a call is initiated, it must be annunciated at the following locations:
 - The Corridor, Intersectional and Room dome light associated with the initiating device.
 - A local master control station indicating the call location and priority.
 - 3) Each duty station.
 - 4) Each staff station.
 - 5) Each remote location.
 - c) All calls must be displayed until they are cleared by the nursing staff **ONLY** from the initiating device location.
 - 2. Voice:
 - a Calls may be initiated through:
 - 1) Patient station.
 - 2) Staff station.
 - 3) Code Blue station.

- 4) Toilet Emergency pull cord / push button station.
- 5) Shower Emergency pull cord station.
- 6) Pillow speaker.
- 7) Push-button cordset.
- 8) Integrated bed controls.
- 9) Master Station.
- 11. Radiology Unit.
 - b. Once a call is initiated, it must be annunciated at the following locations:
 - The Corridor, Intersectional and Room dome light associated with the initiating device.
 - 2) A master station indicating the call location and priority.
 - 3) Any duty stations associated with the unit.
 - 4) Any staff Stations associated with the unit.
 - 5) Each remote location.
 - c. All calls must be displayed until they are cleared by the nursing staff **ONLY** from the initiating device location.
- 3. Provide two-way voice communication between a master station and patient, staff, duty and each of the two (2) remote stations.
- 4. Failure of voice intercom portion of system shall not interfere with visual and audible signal systems.
- 5. All calls must be displayed on the master station until they are cleared by the nursing staff at ONLY the originating station. If multiple calls are received at the master station within a short period of time, they shall be stacked based on priority and wait time. If there are more calls than the master station screen can display at one time (four [4] minimum), the system must provide a simple scrolling feature. The nurse must be able to answer any call in any order at the master station. The nurse must also be able to forward calls to staff members. If a call is not answered within a programmable time period, then the system must forward the call to appropriate back-up staff identified by each shift supervisor in a manner technically approved by VA Headquarters 0050P3B.
- 6. Radio pager (within the restrictions identified herein)
- I. Auxiliary Alarm Monitoring:

- 1. Each patient station must have the ability to connect a separate and isolated auxiliary alarm to it such as an infusion pump or data tracking / recording device (patient life support units ARE NOT allowed to be connected to these units UNLESS APPROVED BY TVE 0050P3B DURING THE PROJECT DEVELOPMENT PHASE AS DESCRIBED HEREIN. The System must support naming the device that is being monitored as well as display its alarms at the master station and via the room / corridor dome light(s).
- 2. Provide (2) alarm jacks at each patient station.
- 3. The above requirements may ONLY be allowed when the system has been approved by VA Headquarters TVE - 005OP3B and TVE - 005OP2B and concurred by the appropriate Medical Service(s) indicates it meets the minimum guidelines and requirements of Paragraph 2.8.A.
- J. Patient and Staff Assignment:
 - System may provide for transfer of one or more individual or groups of stations from one master station to another without mechanical switches or additional wiring of the stations. The transfer may be initiated manually be the nurse or automatically at certain times of the day.
 - 2. The Facility's LAN/WAN IS NOT ALLOWED for Nurses Call/Code Blue main wiring which must be a "stand alone primary cable infrastructure." Connections to the VA LAN/WAN will be allowed ONLY when the LAN/WAN system has been demonstrated and certified by TVE - 0050P3B meeting the minimum guidelines and requirements of the Life Safety Code.
- K. Reports:
 - The system's generated reports logging all calls, alarms, response time, bed, and staff assignments may be allowed to transmit these reports to a central archiving entity.
 - Reports function shall be limited by passwords and security tier level access, so that only supervisors may access it when desired.
 - 3. Provide instructions to the owner on how to enable/disable the reporting functions.
 - 4. The Facility's LAN/WAN IS NOT ALLOWED for Nurses Call/Code Blue main wiring that must be a "stand alone primary cable infrastructure." Connections to the VA LAN/WAN will be allowed ONLY when the system

has been demonstrated and certified by 0050P2B meeting the minimum guidelines and requirements of the Life Safety Code.

- L. System/Management Software:
 - Provide and install system/management software on minimum of three
 (3) owner-provided computers.
 - a. The management software shall at a minimum provide all historical reporting features of the system as well as real-time monitoring of events.
 - b. The system software shall at a minimum provide the system's operating and functioning parameters and script. The OEM shall provide VA with access to the software's script writing and functions.
 - 2. Provide two (2) spare CD's with the software installed and operable.
 - 3. Rights in Data: VA shall have the right to all script and programming language of system management software. If commercial off the shelf (COTS) or a memorandum of understanding (MOU) is required for follow-on maintenance, the Contractor is required to accomplish the COTS Survey document and the RE is required to accomplish the COTS Acquisition document supplied in Part 5 Attachments herein.
- M. System Functional Station:
 - 1. Master Control:
 - a. Simple Tone and Light:
 - A visual / aural (tone only) system shall be provided, protected and located in the Radiology Area. The System shall include a push-button emergency station with an associated corridor dome light in each dressing room (OPC) and toilet (OPC, Day Hospital).
 - 2) The visual / aural (tone only) system shall also include a power supply and a visual / aural (tone only) display panel in the respective OPC receptionist / secretary's office and the Day Hospital area and as shown on the drawings. The visual / tone display panel shall generate audible and visual emergency signals to indicate the location of a placed call.
 - 3) The Visual Display Panel shall be a digital readout touch screen to visually announce the location of incoming calls

placed in the System including room and bed number and priority of the call. Identify each calling station with an individual display, including separate displays for each patient sharing a dual bedside station. If a digital readout touch screen standard is not required or approved by the Facility during the project design phase, an alpha - numeric scheme shall be provided that identifies the: ward, room and bed (i.e. Ward 2a, Room 201, Bed A (or 1) shall read 2A201A or- 2A201-1. Equivalent readouts are acceptable as long as TVE 0050P3B and the Facility approve the readout).

- a) Calls placed at emergency stations located in toilets and baths inside bedrooms shall be displayed for the bed closest to the nurse control station. Beds in multi-bed bedrooms shall be identified in a clock-wise pattern upon entering the bedroom.
- b) It shall display a minimum of four incoming calls.Additional placed calls shall be stored in order of placement and priority.
- 4) The visual / aural (tone only) system shall be installed according to the same Procedures, guidelines and standards outlined for a regular Nurse Call System for emergency NOT CODE BLUE OPERATION.
- 5) Speakerphone and handset communication.
- Provide one (1) spare station for each ten (1) stations installed.
- b. Touch Screen:
 - Provide a touch screen master station with 15" minimum monitor size.
 - 2) The master station shall have a full control capability over staff assignment to patients and beds as well as pagers and wireless personal communication devices (when specifically approved by 0050P3B on a case by case basis).
 - 3) Speakerphone and handset communication.
 - Provide one (1) spare station for each ten (1) stations installed.
- 2. Staff:

- a. Light and Tine Only.
- b. Voice Communications Enabled.
- c. Provide one (1) spare station for each twenty (20) stations installed.
- 3. Duty:
 - a. Light and Tine Only.
 - b. Voice Communications Enabled.
 - c. Provide one (1) spare station for each twenty (20) stations installed.
- 4. Patient:
 - a. Single & Dual:
 - Provide each patient station with the following minimum Feature.
 - a) Call button.
 - b) Call answered button.
 - c) Pillow speaker jack.
 - d) Auxiliary alarm monitoring jack.
 - e) Hospital bed interface jack (when specially approved by TVE- 0050P3B).
 - f) Provide one (1) spare station for each twenty (20) stations installed.
- N. Distribution System: Refer to Specification Sections 27 11 00, Structured TIP Communications Cables; 27 11 00, TIP Communications Interface and Equipment Rooms Fittings and 27 15 00, HORIZONTAL and Vertical TIP Communications Cabling for additional specific TIP wire and cable standards and installation requirements used to install the Facility's TIP network.
 - In addition to the TIP provided under the aforementioned Specification Sections, the contractor shall provide the following additional TIP installation and testing requirements, provide the following minimum additional System TIP requirements, cables & interconnections:
 - a. Each wire and cable used in the System shall be specifically OEM certified by tags on each reel and recommended and approved for installation in the Facility.

- b. The Contractor shall provide the RE a 610 mm (2 foot) sample of each wire and/or cable actually employed in the System <u>and each</u> certification tag for approval before continuing with the installation as described herein.
- c. Fiberoptic Cables: Refer to Specification Section 27 15 00, Horizontal and Vertical TIP Communications Cabling; Paragraph 2.4.C12.d. Fiberoptic Cables - for minimum technical standards and requirements for additional System cables.
- d. Copper Cables: Refer to Specification Section 27 15 00, Horizontal and Vertical TIP Communications Cabling; Paragraph 2.4.C12.c. Copper Cables - for minimum technical standards and requirements for additional System voice and data cables.
- e. Line Level Audio and Microphone Cable:
 - Line level audio and microphone cable for inside racks and conduit.
 - Shielded, twisted pair Minimum 22AWG, stranded conductors and 24AWG drain wire with overall jacket.
- f. Speaker Level Audio (70.7Volt RMS):
 - 1) For use with 70.7V speaker circuits.
 - 2) 18AWG stranded pair, minimum.
- g. All cabling shall be plenum or riser (UL-1666) rated.
- h. Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.
- 2. Raceways, Back Boxes and conduit:
 - a. In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:
 - b. Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.

- c. Intercommunication System cable infrastructure: EMT or in J-hooks above accessible ceilings, 24 inches on center.
- d. Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.
- e. Flexible metal conduit is prohibited unless specifically approved by 0050P3B.
- f. System Conduit:
 - The PA system is NFPA listed as Emergency / Public Safety Communication System which requires the entire system to be installed in a separate conduit system.
 - The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (0050P3B).
 - 3) Conduit Sleeves:
 - a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.
 - b) While the sleeves shown on the drawings will be provided by others, the contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nursecall cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.
- g. Device Back Boxes:
 - Furnish to the electrical contractor all back boxes required for the PA system devices.
 - The electrical contractor shall install the back boxes as well as the system conduit. Coordinate the delivery of the back boxes with the construction schedule.
- 3. UPS:
 - a. Provide a backup battery or a UPS for the System to allow normal operation and function (as if there was no AC power failure) in

the event of an AC power failure or during input power fluctuations for a minimum of 30 minutes.

- b. As an alternate solution, the telephone system UPS may be utilized to meet this requirement at the headend location, as long as this function is specifically approved by the Telephone Contractor and the RE.
- c. The Nurse Call Contractor shall not make any attachments or connection to the telephone system until specifically directed to do so, in writing, by the RE.
- d. Provide UPS for all active system components including but not limited to:
 - 1) System Amplifiers.
 - 2) Microphone Consoles.
 - 3) Telephone Interface Units.
 - 4) TER, TR & Headend Equipment Rack(s).

O. Patient Bedside Prefabricated Units (PBPU):

- 1. Where PBPU's exist in the Facility; the Contractor shall identify the "gang box" location on the PBPU designated for installation of the telephone jack. This location shall here-in-after be identified as the unit's TCO. The Contractor shall be responsible for obtaining written approval and specific instructions from the PBPU OEM regarding the necessary disassembly and reassembly of each PBPU to the extent necessary to pull wire from above the TIP ceiling junction box to the PBPU's reserved gang box for the unit's TCO. A Contractor provided stainless steel cover plate approved for use by the PBPU OEM and Facility IRM Chief shall finish out the jack installation.
- 2. Under no circumstances shall the Contractor proceed with the PBPU installations without the written approval of the PBPU OEM and the specific instructions regarding the attachment to or modifying of the PBPU. The RE shall be available to assist the Contractor in obtaining approvals and instructions in a timely manner as related to the project's time constraints.
- 3. It is the responsibility of the Contractor to maintain the UL integrity of each PBPU. If the Contractor violates that integrity, it shall be the responsibility of the Contractor to obtain on site

UL re-certification of the violated PBPU at the direction of the RE and at the Contractor's expense.

- P. Installation Kit:
 - 1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation sub-kits:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Fiberoptic Optic Cable Armor/External Braid
 - 2) Coaxial Cable Shields.
 - 3) Control Cable Shields.
 - 4) Data Cable Shields.
 - 5) Equipment Racks.
 - 6) Equipment Cabinets.
 - 7) Conduits.
 - 8) Cable Duct.
 - 9) Cable Trays.
 - 10) Interduct
 - 11) Power Panels.
 - 12) Connector Panels.
 - 15) Grounding Blocks.
 - 3. Fiberoptic Cable: The fiberoptic cable kit shall include all fiberoptic connectors, cable tying straps, interduct, heat shrink

tubing, hangers, clamps, etc. required to accomplish a neat and secure installation.

- Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tubing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 5. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 6. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 7. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 8. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 9. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.
- Q. ONCOLOGY, RADIOLOGY, DIALYSIS UNITS when these Units are to be provided as a part of the project, provide each unit as follows with TVE 0050P3B reviewed and approved units designed specifically for service and functions in this type of unit (aka brail, audible and like recognition:
 - 1. CODE BLUE provide a Code Blue System as described herein.
 - 2. EMERGENCY STATION:
 - a. A push-button emergency station shall be provided in each toilet stall and each shower/bath facility in Psychiatric Units. Shower

emergency stations shall be installed inside the shower stall at the shower head end. They shall be installed approximately a minimum of 18 inches from the showerhead itself and at a maximum of 72 inches above the finished floor. Each station inside shower and toilet areas shall be equipped with a rubber gasket between the faceplate and wall or be rated by UL as waterproof. The gasket shall cover and water seal the entire back box opening and not extend beyond the sides of the associated faceplate by 4" MAX. If the wall is tile or other uneven type material the gasket and associated faceplate shall be provided to completely seal the opening and uneven material surface.

- b. Fasten each emergency station faceplate to the back-boxes with tamperproof screws.
- c. Pressing the push-button on any emergency station shall generate visual signals in the room & corridor dome light(s) and emergency audible and visual signals at the nurse control station.
- 3. PATIENT STATION:
 - a. Provide a patient station with pushbutton, microphone/speaker.
 - b. Mount all equipment with tamperproof screws.
 - c. Selection of the patient room station at the nurse control station shall permit two-way voice communication within the room and nurse control station, through the patient wall microphone/speaker.
 - d. Pressing the push-button on any patient wall station shall generate visual signals in the Room & corridor dome light(s) and routine audible and visual signals at the nurse control station.
 - e. The patient wall station shall be equipment with a method (aka separate push-button) to initiate an emergency call in the room and corridor dome lights and nurse call station.
 - 4. NURSE CONTROL (aka MASTER) STATION provide a station as described herein.

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT

A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.

- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2B) at (301) 734-0350 to have a VA Certified Telecommunications COR assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and OCIS Teams.

3.2 COORDINATION WITH OTHER TRADES

- A. Coordinate with the cabling contractor the location of the TV faceplate and the faceplate opening for the nurse call TV control jack.
- B. Coordinate with the cabling contractor the location of TIP equipment in the TER in order to connect to the TIP cable network that was installed as a part of Section Specification 27 11 00. Contact the RE immediately, in writing, if additional location(s) are discovered to be activated that was not previously provided.
- C. Before beginning work, verify the location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems.
 - Primary, emergency and extra auxiliary AC power generator requirements.
 - Junction boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for the systems.
 - 4. System components installed by others.
 - 5. Overhead supports and rigging hardware installed by others.
- D. Immediately notify the Owner, GC and Consultant(s) in writing of any discrepancies.

3.3 NEEDS ASSESSMENT

A. Provide a one-on-one meeting with the particular nursing manager of each unit affected by the installation of the new nurse call/code blue system. Review the floor plan drawing, educate the nursing manager with the functions of the equipment that is being provided and gather details specific to the individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that will affect system programming and training.

3.4 INSTALLATION

A. General:

- Execute work in accordance with National, State and local codes, regulations and ordinances.
- 2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
- Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
- Secure equipment firmly in place, including receptacles, speakers, equipment racks, system cables, etc.
 - All supports, mounts, fasteners, attachments and attachment points shall support their loads with a safety factor of at least 5:1.
 - b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
 - d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and TVE 0050P3B.
- 6. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.
- 7. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the

requirements of FCC standards for telephone and data equipment, systems, and service.

- 8. Color code all distribution wiring to conform to the Nurse Call Industry Standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.
- 9. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 10. Product Delivery, Storage and Handling:
 - a. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
 - b. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- 11. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 12. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- B. Equipment Racks/Cabinets:
 - Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks/cabinets.
 - Provide security covers for all devices not requiring routine operator control.
 - 3. Provide vent panels and cooling fans as required for the operation of equipment within the OEM' specified temperature limits. Provide adequate ventilation space between equipment for cooling. Follow manufacturer's recommendations regarding ventilation space between amplifiers.
- 4. Provide insulated connections of the electrical raceway to equipment racks.
- 5. Provide continuous raceway/conduit with no more than 40% fill between wire troughs and equipment racks/cabinets for all nonplenum-rated cable. Ensure each system is mechanically separated from each other in the wireway.
- 6. Ensure a minimum of 36 inches around each cabinet and/or rack to comply with OSHA Safety Standards. Cabinets and/or Racks installed side by side - the 36" rule applies to around the entire assembly
- C. Distribution Frames.
 - 1. A new stand-alone (i.e., self supporting, free standing) PA rack/frame may be provided in each TR to interconnect the TCR, PCR, SCC, NS, STRs & ECRs. Rack/frames shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The PA riser cable shall be sized to satisfy all voice/digital requirements plus not less than 50% spare (growth) capacity in each TR which includes a fiber optic backbone.
 - 2. The frames/racks shall be connected to the TER/MCR system ground.
- D. Wiring Practice in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP Structured Communications Cabling, 27 11 00 - TIP Communications Rooms Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered too:
 - Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
 - Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
 - 3. Wiring shall be classified according to the following low voltage signal types:
 - Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
 - b. 70V audio speaker level audio.
 - c. Low voltage DC control or power (less than 48VDC)
 - Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is

27 52 23 - 43 NURSE CALL AND CODE BLUE SYSTEMS to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches. Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.

- 5. Do not splice wiring anywhere along the entire length of the run. Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
- Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
- Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
- Use wire pulling lubricants and pulling tensions as recommended by the OEM.
- 9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 10. Do not use tape-based or glue-based cable anchors.
- 11. Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
- 12. Field wiring entering equipment racks shall be terminated as follows:
 - a. Provide OEM directed service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.
 - b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.") Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
 - c. If specified terminal blocks are not designed for rack mounting, utilize ¾" plywood or 1/8" thick aluminum plates/blank panels as a mounting surface. Do not mount on the bottom of the rack.
 - d. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.

- 13. Use only balanced audio circuits unless noted otherwise directed and indicated on the drawings.
- 14. Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 15. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- 16. Wires or cables **previously approved** to be installed outside of conduit, cable trays, wireways, cable duct, etc:
 - a Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - b Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - c Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - d Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished

through hollow spaces in walls and shall be certified for use in air plenum areas.

- e Completely test all of the cables after installation and replace any defective cables.
- f Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
- E. Cable Installation Cable Installation In addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling and the following additional practices shall be adhered too:
 - Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable tray, j-hooks, and bridal rings. Velcro wrap cable bundles loosely to the means of support with plenum rated Velcro straps. Plastic tie wraps are not acceptable as a means to bundle cables.
 - 2. Run cables parallel to walls.
 - 3. Install maximum of 10 cables in a single row of J-hooks. Provide necessary rows of J-hooks as required by the number of cables.
 - Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
 - 5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply

with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.

- Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
- 7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
- Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
- 9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
- 10. Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- 12. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 13. Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.
- 14. Serve all cables as follows:
 - a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heatshrink and serve as indicated below.
 - b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing ¼" past the end of unused wires, fold back over jacket and secure with cable tie.

- c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.
- F. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for Nurse Call and/or Code Blue circuits shall be stenciled using laser printers.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - a. Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
 - c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
 - 4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."
 - 5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
 - Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heatshrink tubing covering the end of the overall jacket. Alternatively,

computer generated labels of the type which include a clear protective wrap may be used.

- Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
- 8. Ensure each OEM supplied item of equipment has appropriate UL Labels / Marks for the service the equipment is performed permanently attached / marked to a <u>non-removal</u> board in the unit. EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.
- G. Conduit and Signal Ducts: When the Contractor and/or OEM determines additional system conduits and/or signal ducts are required in order to meet the system minimum performance standards outlined herein, the contractor shall provide these items as follows:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weather heads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed.
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow Nurse Call and/or Code Blue cables to be installed in partitioned cable tray with voice cables may be granted in writing by the RE if requested). Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 - c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- d. When "interduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit fill (including GFE approved to be used in the system) shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- f. Ensure that Critical Care Nurse Call and/or Code Blue Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use GFE signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.
 - d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible

3.5 PROTECTION OF NETWORK DEVICES

A. Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved electrostatic discharge (ESD) wrist straps tied to chassis ground. The wrist strap shall meet

> 27 52 23 - 50 NURSE CALL AND CODE BLUE SYSTEMS

OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.6 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete the Work or to make its parts fit together properly.
- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor's consent to cutting or otherwise altering the Work.
- E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the location shall be approved by the Project Manager prior to commencement of coring work.

3.7 FIREPROOFING

- A. Where Nurse Call and/or Code Blue wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.
- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.

- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.
- D. Install fireproofing where low voltage cables are installed in the same manholes with high voltage cables; also cover the low voltage cables with arc proof and fireproof tape.
- E. Use approved fireproofing tape of the same type as used for the high voltage cables, and apply the tape in a single layer, one-half lapped or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (one inch) into each duct.
- F. Secure the tape in place by a random wrap of glass cloth tape.

3.8 GROUNDING

- A. Ground Nurse Call and/or Code Blue cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26 - Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.
- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use "3rd or 4th" wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.
- H. Insure grounds of different systems are installed as to not violate OSHA Safety and NEC installation requirements for protection of personnel.

PART 4 - TESTING / GUARANTY / TRAINING

4.0 SYSTEM LISTING

A. The Nurses Call System is NFPA listed as an "Emergency" Communication system. Where Code Blue signals are transmitted, that listing is elevated to "Life Support/Safety." Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and Warranted by the OEM.

4.1 PROOF OF PERFORMANCE TESTING

- A. Intermediate Testing:
 - 1. After completion of 30 40% of the installation of a head end cabinet(s) and interconnection to the corresponding System Patient Head Wall Units and equipment, one master stations, local and remote stations, treatment rooms, and prior to any further work, this portion of the system must be pretested, inspected, and lcertified. Each item of installed equipment shall be checked to ensure appropriate UL Listing and Certification Labels are affixed as required by NFPA -Life Safety Code 101-3.2 (a) & (b), UL Nurse Call Standard 1069 and JCHCO evaluation guidelines, and proper installation practices are followed. The intermediate test shall include a full operational test.
 - 2. All inspections and tests shall be conducted by an OEM-certified contractor representative and witnessed by TVE-0050P3B if there is no local Government Representative that processes OEM and VA approved Credentials to inspect and certify the system. The results of the inspection will be officially recorded by the Government Representative and maintained on file by the RE, until completion of the entire project. The results will be compared to the Acceptance Test results. An identical inspection may be conducted between the 65 - 75% of the system construction phase, at the direction of the RE.
- B. Pretesting:
 - Upon completing installation of the Nurse Call and/or Code Blue System, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.
 - 2. Pretesting Procedure:

- a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.
- b. The Contractor shall pretest and verify that all PSM System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, each of the following locations shall be fully pretested:
 - 1) Central Control Cabinets.
 - 2) Nurse Control Stations.
 - a) Master Stations
 - b) Patient Stations
 - c) Staff Stations
 - d) Emergency Stations
 - e) Code Blue Stations
 - 3) Dome Lights.
 - a) Patient Rooms
 - b) Corridors
 - c) Intersectional
 - 4) STRs
 - 5) Local and Remote Enunciation Panels (code blue).
 - 6) Electrical Supervision Panels/Functions/locations.
 - 7) All Networked locations.
 - System interface locations (i.e. wireless, PA, telephone, etc.).
 - 9) System trouble reporting.
 - 10) System electrical supervision.
 - 11) UPS operation.
 - 12) Primary / Emergency AC Power Requirements
 - 13) Extra Auxiliary Generator Requirements.
 - 14) NSs.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.

- C. Acceptance Test:
 - 1. After the Nurse Call and/or Code Blue System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 15 working days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a TVE 0050P3B and OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety / Critical Service compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
 - 2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System. Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable.
 - Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.
- D. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. The TVE 0050P3B Representative will tour all major areas where the Nurse Call and/or Code Blue System and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this

time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.

- b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.
- c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.
- 2. Operational Test:
 - a. After the Physical and Mechanical Inspection, the central terminating and nurse call master control equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
 - b. Following the central equipment test, a pillow speaker (or on board speaker) shall be connected to the central terminating and nurse call master control equipment's output tap to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
 - c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last intersectional, room, and bed dome light in each leg to verify that the nurse call distribution system meets all system performance standards.
 - d. Each MATV outlet that is controlled by a nurse call pillow speaker shall be functionally tested at the same time utilizing the Contractor's approved hospital grade HDTV receiver and TV remote control cable.
 - e. The RED system and volume stepper switches shall be checked to insure proper operation of the pillow speaker, the volume stepper and the RED system (if installed).
 - f. Additionally, each installed emergency, patient, staff, duty, panic station, intersectional, room, and bed dome light, power supply, code one, and remote annunciator panels shall be checked insuring they meet the requirements of this specification.
 - g. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

operating system. The typical functions are: nurse follower, three levels of emergency signaling (i.e. flashing red emergency, flashing white patient emergency, flashing white or combination lights for staff emergency, separate flashing code blue), minimum of 10 minutes of UPS operation, memory saving, minimum of ten station audio paging, canceling emergency calls at each originating station only, and storage and prioritizing of calls.

- h. Individual Item Test: The TVE 0050P3B Representative will select individual items of equipment for detailed proof of performance testing until 100% of the System has been tested and found to meet the contents of this specification. Each item shall meet or exceed the minimum requirements of this document.
- 3. Test Conclusion:
 - a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the RE. Any retesting to comply with these specifications will be done at the Contractor's expense.
 - b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.
- E. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - 1. Spectrum Analyzer.
 - 2. Signal Level Meter.
 - 3. Volt-Ohm Meter.
 - 4. Sound Pressure Level (SPL) Meter.
 - 5. Oscilloscope.
 - 6. Pillow Speaker Test Set (Pillow Speaker with appropriate load and cross connections in lieu of the set is acceptable).
 - 7. Patient Push Button Cord Test Set.
 - 8. Patient Bed with connecting multiple conductor cord.

4.2 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:
- B. Contractor's Responsibility:
 - 1. The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
 - 3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the two year guaranty period:
 - a. Response Time during the Two Year Guaranty Period:
 - The RE (or Facility Contracting Officer if the system has been turned over to the Facility) is the Contractor's ONLY OFFICIAL reporting and contact official for nurse call system trouble calls, during the guaranty period.
 - 2) A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by the RE (or Facility Contracting Officer), Monday through Friday exclusive of Federal Holidays.
 - The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one (1) working day of its report. A routine trouble is considered a trouble which causes a pillow speaker or cordset, one (1) master nurse

27 52 23 - 58 NURSE CALL AND CODE BLUE SYSTEMS control station, patient station, emergency station, or dome light to be inoperable.

- b) Routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as an emergency trouble call. The RE (or Facility Contracting Officer) shall notify the Contractor of this type of trouble call.
- c) An emergency trouble call within four hours of its report. An emergency trouble is considered a trouble which causes a sub-system (ward), distribution point, terminal cabinet, or code one system to be inoperable at anytime.
- 4) If a Nurse Call and/or Code Blue/ component failure cannot be corrected within four (4) hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate nurse call equipment. The alternate equipment/system shall be operational within a maximum of 20 hours after the four (4) hour trouble shooting time and restore the effected location operation to meet the System performance standards. If any sub-system or major system trouble cannot be corrected within one working day, the Contractor shall furnish and install compatible substitute equipment returning the System or sub-system to full operational capability, as described herein, until repairs are complete.
- b. Required On-Site Visits during the **Two Year** Guaranty Period
 - The Contractor shall visit, on-site, for a minimum of eight

 (8) hours, once every 12 weeks, during the guaranty period, to
 perform system preventive maintenance, equipment cleaning, and
 operational adjustments to maintain the System according the
 descriptions identified in this document.
 - The Contractor shall arrange all Facility visits with the RE (or Facility Contracting Officer) prior to performing the required maintenance visits.
 - Preventive maintenance shall be performed by the Contractor in accordance with the OEM's recommended practice and service

intervals during non-busy time agreed to by the RE (or Facility Contracting Officer) and Contractor.

- The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE (or Facility Contracting Officer).
- 5) The Contractor shall provide the RE (or Facility Contracting Officer) a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Acceptance Test. The following reports are the minimum required:
 - a) The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to RE (or Facility Contracting Officer) by the fifth (5th) working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance.
 - b) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 6) The RE (or Facility Contracting Officer) shall convey to the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The RE (or Facility Contracting Officer) shall ensure a copy of these reports is entered into the System's official acquisition documents.
 - b) The Facility Chief Engineer shall ensure a copy of these reports is entered into the System's official technical record documents.

C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor, contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render

4.3 TRAINING

- A. Provide thorough training of all nursing staff assigned to those nursing units receiving new networked nurse/patient communications equipment. This training shall be developed and implemented to address two different types of staff. Floor nurses/staff shall receive training from their perspective, and likewise, unit secretaries (or any person whose specific responsibilities include answering patient calls and dispatching staff) shall receive operational training from their perspective. A separate training room will be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of the new system.
- B. Provide the following minimum training times and durations:
 - 48 hours prior to opening for nursing staff (in 8-hour increments) split evenly over 3 weeks and day and night shifts. Coordinate schedule with Owner.
 - 32 hours during the opening week for nursing staff both day and night shifts.
 - 3. 24 hours for supervisors and system administrators.

- - - E N D - - -

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, intrusion detection, duress alarms, video assessment and surveillance, video recording and storage, delayed egress, personal protection system, intercommunication system, fire alarm interface, equipment cabinetry, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide

28 05 00 - 1

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 51 13 ALUMINUM WINDOWS. Requirements for window installation.
- D. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- E. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- F. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.

28 05 00 - 2

- G. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- H. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- I. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- J. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- K. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- L. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- M. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for Commissioning.
- N. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.
- O. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- P. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.

28 05 00 - 3

- Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.

28 05 00 - 4

- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion

28 05 00 - 5

detection, closed circuit television, intercom) into a single platform and graphical user interface.

- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- XX. UTP: Unshielded Twisted Pair
- YY. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete

28 05 00 - 6

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations

28 05 00 - 7

of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION ".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.

28 05 00 - 8

- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and

28 05 00 - 9

capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.

- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.
- Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.

28 05 00 - 10

- d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:

- a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
- b) A control sequence describing start-up, operation, and shutdown.
- c) Description of the function of each principal item of equipment.
- d) Installation and maintenance instructions.
- e) Safety precautions.
- f) Diagrams and illustrations.
- g) Testing methods.
- h) Performance data.
- i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each

28 05 00 - 12

product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.

- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

28 05 00 - 13

the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.

- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.

28 05 00 - 14

- b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
- c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
- d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations,

28 05 00 - 15

standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.

- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
 - 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
 - 4) Details of connections to power supplies and grounding
 - 5) Details of surge protection device installation
 - Sensor detection patterns Each system sensor shall have associated detection patterns.
 - 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
 - Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
 - 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan

28 05 00 - 16
for the equipment room. The layout plan shall identify all equipment and details associated with the installation.

- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number
 - 8) Lock Type, Model Number & Power Input/Draw (standby/active)
 - 9) Card Reader Type & Model Number
 - 10) Shunting Device Type & Model Number
 - 11) Sounder Type & Model Number
 - 12) Manufacturer
 - 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device

14) Remarks column indicating special notes or door configurations

28 05 00 - 17

- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage
 - e. Camera Location
 - f. Floor Plan Sheet Number
 - g. Camera Type
 - h. Mounting Type
 - i. Standard Detail Reference
 - j. Power Input & Draw
 - k. Power Panel Location
 - 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.

- d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
- e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number
 - 4) First Relay Number
 - 5) DGP, input or output Location
 - 6) DGP Chain Number
 - 7) DGP Cabinet Tamper Input Number
 - 8) DGP Power Fail Input Number
 - 9) Number of Monitor Points Reserved For Expansion Boards
 - Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)

28 05 00 - 19

- 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
- 6) Description Field
- 7) DGP Input Location
- 8) Date Test
- 9) Date Passed
- 10) Cable Type
- 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 7) DGP or input module Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:1) Header

- a) DGP Input and Output Worksheet
- b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
- 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 5. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 6. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
 - b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
 - c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 7. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package

- 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the COR documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.
- System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- H. Group III Technical Data Package
 - Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the COR for approval at least 60 calendar days prior to the requested test date.
- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the COR for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final

PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.

- 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
- COR3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,
 - 5) All other security subsystems shown in the contract documents.
 - b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.

28 05 00 - 23

- c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.
- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the COR as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.

- Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
- Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection,

recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.

- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.

28 05 00 - 26

- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the COR or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at anytime.

- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:
 - a. Certificates received instead of labels on bulk products.
 - b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
 - c. Documented qualification of installation firms.
 - d. Load and performance testing.
 - e. Inspections and certifications.
 - f. Final inspection and correction procedures.
 - g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by

the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.

- b. The Contractor shall provide the COR a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact infield conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

K. FIPS 201 Compliance Certificates

 Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:

28 05 00 - 29

- a. Card Readers
- b. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- O. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC):

A117.1.....Standard on Accessible and Usable Buildings and Facilities

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 C. American National Standards Institute (ANSI) / Security Industry Association (SIA): AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards CP-01-00......Control Panel Standard-Features for False Alarm Reduction PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity TVAC-01..... CCTV to Access Control Standard - Message Set for System Integration D. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA): 330-09.....Electrical Performance Standards for CCTV Cameras 375A-76.....Electrical Performance Standards for CCTV Monitors E. American National Standards Institute (ANSI): ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems F. American Society for Testing and Materials (ASTM) B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07.....for Soft or Annealed Copper Wire B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape G. Architectural Barriers Act (ABA), 1968 H. Department of Justice: American Disability Act (ADA) 28 CFR Part 36-2010 ADA Standards for Accessible Design

28 05 00 - 31

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 I. Department of Veterans Affairs: VHA National CAD Standard Application Guide, 2006 VA BIM Guide, V1.0 10 J. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems K. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal Employees and Contractors L. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) M. Government Accountability Office (GAO): GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities N. Homeland Security Presidential Directive (HSPD): HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08.....Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard C2-07.....National Electrical Safety Code C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810.....Identification cards - Physical characteristics 7811.....Physical Characteristics for Magnetic Stripe

Cards

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange 14443.....Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693......Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance 19794..... Information technology - Biometric data interchange formats Q. National Electrical Contractors Association 303-2005..... Installing Closed Circuit Television (CCTV) Systems R. National Electrical Manufactures Association (NEMA): Maximum) TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 S. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 731-08..... Standards for the Installation of Electric Premises Security Systems 99-2015.....Health Care Facilities T. National Institute of Justice (NIJ) 0601.02-03.....Standards for Walk-Through Metal Detectors for use in Weapons Detection 0602.02-03......Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1... DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines $28 \ 05 \ 00 \ - \ 34$

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards Y. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04..... and Fittings 6-07.....Rigid Metal Conduit 44-05......Thermoset-Insulated Wires and Cables 50-07.....Enclosures for Electrical Equipment 83-08..... Thermoplastic-Insulated Wires and Cables 294-99......The Standard of Safety for Access Control System Units 305-08..... Standard for Panic Hardware 360-09.....Liquid-Tight Flexible Steel Conduit 444-08.....Safety Communications Cables 464-09.....Audible Signal Appliances 467-07..... Electrical Grounding and Bonding Equipment 486A-03..... Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations 486E-00......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514A-04.....Metallic Outlet Boxes 514B-04......Fittings for Cable and Conduit 51-05.....Schedule 40 and 80 Rigid PVC Conduit 609-96..... Units and Systems 634-07..... Standards for Connectors with Burglar-Alarm Systems 636-01..... Standard for Holdup Alarm Units and Systems 28 05 00 - 35 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 639-97.....Detection Units 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 752-05.....Standard for Bullet-Resisting Equipment 797-07.....Electrical Metallic Tubing 827-08.....Central Station Alarm Services 1037-09.....Standard for Anti-theft Alarms and Devices 1635-10.....Digital Alarm Communicator System Units 1076-95..... Standards for Proprietary Burglar Alarm Units and Systems 1242-06.....Intermediate Metal Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1981-03.....Central Station Automation System 2058-05.....High Security Electronic Locks 60950.....Safety of Information Technology Equipment 60950-1..... Information Technology Equipment - Safety -Part 1: General Requirements Z. Uniform Federal Accessibility Standards (UFAS) 1984

AA. United States Department of Commerce: Special Pub 500-101Care and Handling of Computer Magnetic Storage

Media

BB. The ANSI/TIA Standards as noted in the Division 27 specifications.

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

28 05 00 - 36

- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

- The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.
- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.
- E. System Inspections

28 05 00 - 37

- 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- F. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day, 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from arrival on site. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

- G. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- H. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- I. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.
- J. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- K. Software
 - The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
 - Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature

28 05 00 - 40

between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.

- Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
- Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
- 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - 2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.
 - 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
 - 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.

28 05 00 - 41

- 5. Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.

28 05 00 - 42

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.
- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for 8 hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Emergency Generator
 - a. Intercom Stations
 - b. Lights: Unit Control Room, Equipment Rooms, & Security Offices
 - c. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
 - d. Security Device Power Supplies (DGP, VASS, Card Access, Lock Power, etc.) powered from the security closets or remotely: various locations
 - e. Telephone/Radio Recording Equipment: Unit Control Room.
 - f. VASS Camera Power Supplies: Security Closets
 - g. VASS Pan/Tilt Units: Various Locations
 - h. Intercom Master Control System
 - i. Fiber Optic Receivers/Transmitters
 - 2. Uninterruptible Power Supply (UPS) on Emergency Power

28 05 00 - 43

- a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room
 - Communications equipment: Control Equipment Room and various sites.
 - 4) VASS Matrix Switcher: Control Equipment Room
 - 5) VASS: Control Equipment Room
 - 6) Digital Video Recorders, encoders & decoders: Control Room
 - 7) All equipment Room racked equipment.
 - 8) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPRESSION, & GROUNDING

- A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.
 - 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
 - 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 degF), 0 to 95 percent relative humidity.
- B. Grounding and Surge Suppression

28 05 00 - 44

- The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, under ground-fault conditions.
- Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
- 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
- Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
- 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
- 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is

28 05 00 - 45

more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.

- 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.
 - 1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.
 - b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
 - c. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.
 - 2. Console racks:
 - a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
 - b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.

28 05 00 - 46

- C. Tamper Provisions and Tamper Switches:
 - Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
 - 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.
 - 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.
 - 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
 - 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
 - 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance

adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.

- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The COR shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the COR stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - Identity of the material or devices specified for which there is a proposed substitution.
 - Description of the segment of the specification where the material or devices are referenced.
 - Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.

28 05 00 - 48

- 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COTR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a pointby-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with

the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer. All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COTR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COTR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COTR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of its failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater

than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.21 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 8 hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.

28 05 00 - 51

- 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.
- 3. Controlling devices shall be utilized to interface the SMS with all field devices.
- B. Wires and Cables:
 - Shall meet or exceed the manufactures recommendation for power and signals.
 - Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
 - 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
 - 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
 - 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
 - A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
 - 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
 - 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
 - 9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that
provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION

- A. Transient Voltage Surge Suppression
 - 1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:
 - A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
 - d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, noncondensing.
- B. Physical Access Control Systems
 - 1. Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:
 - a. UL1449 2nd Edition, 2007, listed
 - b. UL1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Light(s)
 - d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 µsec)
 - e. Maximum Continuous Current: 15 Amps

28 05 00 - 53

```
f. MCOV: 125 VAC
```

- g. Service Voltage: 110-120 VAC
- Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. UL 497B
 - b. Minimum Surge Current Capacity: 2,000 Amps per pair
 - c. Maximum Continuous Current: 5 Amps
 - d. MCOV: 33 Volts
 - e. Service Voltage: 24Volts
- 3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. Conforms with UL497B standards (where applicable)
 - b. Clamp level for 12 and 24V power: $18\ensuremath{\,\text{VDC}}$ / $38\ensuremath{\,\text{VDC}}$
 - c. Clamp level for Data/LED: 6.8VDC
 - d. Service Voltage for Power: 12VDC/24VDC
 - e. Service Voltage for Data/LED: <5VDC
 - f. Clamp level PoE Access Power: 72V
 - g. Clamp level PoE Access Data: 7.9V
 - h. Service Voltage PoE Access: 48VAC 54VAC
 - i. Service Voltage PoE Data: <5VDC

C. Intercom Systems

- Suppressors shall be installed on the AC power at the point of service and shall meet the following criteria:
 - a. UL 1449 Listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Diagnostic Indicator Light(s)
 - d. Integrated ground terminating post (where case/chassis ground exists)
 - e. Minimum Surge Current Capacity of 13,000 Amps (8 x 20 µSec)
- Suppressors shall be installed on incoming central office lines and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Auto-reset current protection not to exceed 2 Amps per pair

28 05 00 - 54

- d. Minimum Surge Current of 500 Amps per pair (8 x 20 $\mu Sec)$
- 3. Suppressors shall be installed on all telephone/intercom circuits that enter or leave separate buildings and shall meet the following criteria:
 - a. UL 497A Listed (where applicable)
 - b. UL 497B Listed (horns, strobes, speakers or communication circuits over 300 feet)
 - c. Multi Stage protection design
 - d. Auto-reset over-current protection not to exceed 5 Amps per pair
 - e. Minimum Surge Current of 1000 Amps per pair (8 x 20 µSec)
- D. Video Surveillance System
 - Protectors shall be installed on coaxial cable systems on points of entry and exit from separate buildings. Suppressors shall be installed at each exterior camera location and include protection for 12 and/or 24 volt power, data signal and motor controls (for Pan, Tilt and Zoom systems). SPDs shall protect all modes herein mentioned and contain all modes in a single unit system. Protection for all systems mentioned above shall be incorporated at the head end equipment. Additionally a minimum 450VA battery back up shall be used to protect the DVR or VCR and monitor. Protectors shall meet the following criteria:
 - a. Head-End Power
 - 1) UL 1778, CUL (Battery Back Up)
 - 2) Minimum Surge Current Capacity: 65,000 Amps (8x20µsec)
 - 3) Minimum of two (2) NEMA 5-15R Receptacles (one (1) AC power only, one (1) with UPS)
 - 4) All modes protected (L-N, L-G, N-G)
 - 5) EMI/RFI Filtering
 - 6) Maximum Continuous Current: 12 Amps
 - b. Camera Power
 - Minimum Surge Current Capacity: 1,000 Amps (8X20µsec); 240 Amps for IP Video/PoE cameras
 - 2) Screw Terminal Connection
 - 3) All protection modes L-G (all Lines)
 - 4) MCOV <40VAC
 - c. Video And Data

28 05 00 - 55

- 1) Surge Current Capacity 1,000 Amps per conductor
- 2) "BNC" Connection (Coax)
- 3) Protection modes: L-G (Data), Center Pin-G, Shield-G (Coax)
- 4) Band Pass 0-2GHz
- 5) Insertion Loss <0.3dB
- E. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, undergroundfault conditions.
 - The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
 - 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- F. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)
 - 6. Weight: 2.88 g (0.18 lbs)
 - 7. Housing: ABS

2.5 INSTALLATION KIT

A. General:

28 05 00 - 56

- 1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:
- 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
- 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire

28 05 00 - 57

wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.

- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for 8 hours to instruct VA personnel in operation and maintenance of units.

28 05 00 - 59

E. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems (e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms). System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the COR on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed

28 05 00 - 60

forms shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the COR has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:

- a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with COR for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with COR to ensure data uploading is performed without incident of loss of function or data loss.
- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of COR to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
- The Contractor shall identify and request from the COR, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and COR coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The

28 05 00 - 61

following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

	Description of Tasks						
Descr iptio n of Syste ms	Develop System Loading Sheets	Coordina tion	Initial Set-up Configur ation	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)
SMS Setup & Confi gurat ion	e.g., program monitori ng stations , programm ing networks , intercon nections between CCTV, intercom s, time synchron ization	e.g., retrieve IP addresse s, naming conventi ons, standard event descript ions, programm ing template s, coordina te special system needs	e.g., Load system Operatin g System and Applicat ion software , general system configur ations	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. , prog ram moni tori ng stat ions , prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s, time sync hron izat ion	e.g., check all system diagno stics (e.g., client s, panels)	Load and set- up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration

							e.g., creating
							a door, door
					e.g.		configuration,
					,		adding request
		e.g.,	e.g.,	setu e.g.,	e.g.,	to exit, door	
		confirmi	enter		p of	of perfor evi ming e, entry por testin rou g to s & confir che m ale correc t set- EX, up and pock config	monitors and
	e.g.,	ng	data		devi		relays, door
	setup of	device	from		ce,		timers, door related events
	device,	configur	loading		door		
ronic	door	ations,	sheets;		grou		
Entry	groups &	naming	configur		ps &		(e.y., access,
Contr	schedule	conventi	е		sche		access denied,
Syste ms	s, REX,	ons,	componen		dule		forced open, held open), linkages, controlled
	Locks,	event	ts, link		s,		
	link	descript	events,		REX,		
	graphics	ion and	cameras.		, Lock		
	graphico	parrativ	and		1000		areas,
		es	graphics		link n	uracio	advanced door
						11	monitoring,
					grap		time zones,
					hics		sequence of
							operations

Note:					
Progr					
ammin					
annit					
y tooka					
LASKS					
are					
suppo					
rted					
throu					
gh					
the					
contr			per		
actor			graphic		
's			5 1		
devel			map		
opmen					
t of					
the					
Techn					
ical					
Data					
Packa					
qe					
Submi					
ttals					
	I			L	

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the COR at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COTR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the

28 05 00 - 65

conclusion of each phase of testing and prior to COR approval of the test.

- 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.
- B. Pre-Delivery Testing
 - 1. The purpose of the pre-delivery test is to establish that a system is suitable for installation. As such, pre-delivery test shall be a mock-up of the system as planned in the contract documents. The Contractor shall assemble the Security Test System at the Contractors local project within 50-miles of the project site, and perform tests to demonstrate the performance of the system complies with the contract requirements in accordance with the approved predelivery test procedures. The tests shall take place during regular daytime working hours on weekdays. Model numbers of equipment tested shall be identical to those to be delivered to the site. Original copies of all data produced during pre-delivery testing, including results of each test procedure, shall be documented and delivered to the COR at the conclusion of pre-delivery testing and prior to COR's approval of the test. The test report shall be arranged so all commands, stimuli, and responses are correlated to allow logical interpretation. For Existing System modifications, the contractor shall provide their own server with loaded applicable software to support PDT.
 - Test Setup: The pre-delivery test setup shall include the following:
 - a. All console equipment.
 - 1) At least one of each type of data transmission media (DTM) and associated equipment to provide a fully integrated PACS.
 - The number of local processors shall equal the amount required by the site design.

28 05 00 - 66

- 3) Enough sensor simulators to provide alarm signal inputs to the system equal to the number of sensors required by the design. The alarm signals shall be manually or software generated.
- Contractor to prove to owner all systems are appropriately sized and configured as sized.
- 5) Integration of VASS, intercom systems, other subsystems.
- 3. During the bidding process the contractor shall submit a request for information to the Owner to determine if a pre-delivery test will be required. If a pre-delivery test is not required, the contractor shall provide a written notification that the Pre-delivery Test is not required in their shop drawings submission.
- C. Intermediate Testing
 - 1. After completion of 30-50 percent of the installation of ESS cabinet(s) and equipment, one local and remote control stations and prior to any further work, this portion of the system must be pretested, inspected, and certified. Each item of installed equipment shall be checked to ensure appropriate FCC listing & UL certification labels are affixed, NFPA, Emergency, Safety, and JCAHCO guidelines are followed, and proper installation practices are followed. The intermediate test shall include a full operational test.
 - D. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the COR (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.
 - E. Contractor's Field Testing (CFT)
 - The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of

28 05 00 - 67

test details) for each device and system tested, and annotated loading sheets documenting complete testing to COR approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the COR's acceptance testing procedures. The Contractor shall provide the COR with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to the COR stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

F. Performance Verification Test (PVT)

- 1. Test team:
 - a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test to date and give the COR written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the COR. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and

28 05 00 - 68

functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for outof-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.

- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the COR or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the COR prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for CORs approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.

28 05 00 - 69

- 6. Partial PVT At the discretion of COR, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.
- G. Endurance Test
 - 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the COR notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The COR may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the COR prior to acceptance of the system.
 - 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the COR.
 - 3. Phase II (Assessment):
 - a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report

28 05 00 - 70

shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.

- b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after the COR receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase I be repeated.
- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COTR.
- 5. Phase IV (Assessment):
 - After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COTR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COTR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COTR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the COR receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected

28 05 00 - 71

by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the COR may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

- H. Exclusions
 - 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.
- G. Section 31 20 11 EARTHWORK (SHORT FORM). For excavation and backfill for cables that are installed in conduit.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.

- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the COR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.

- Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
- 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
- 6. Project planning documents as specified in Part 3.
- 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride

Plastic Pressure Sensitive Electrical

Insulating Tape

C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed

Installation)

D. National Fire Protection Association (NFPA):

```
70-17.....National Electrical Code (NEC)
```

E. Underwriters Laboratories, Inc. (UL):

44-05..... Thermoset-Insulated Wires and Cables

- 83-08..... Wires and Cables
- 467-07.....Electrical Grounding and Bonding Equipment

486A-03.....Wire Connectors and Soldering Lugs for Use with Copper Conductors

- 486C-04.....Splicing Wire Connectors
- 486D-05.....Insulated Wire Connector Systems for

Underground Use or in Damp or Wet Locations

486E-00.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Fittings for Cable and Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - Test optical fiber cable to determine the continuity of the strand end to end. Use optical-fiber flashlight or optical loss test set.
 - Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.
- B. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems." Flexible metal conduit shall not be used.
 - Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG .
 - b. Communications, Plenum Rated: Type CMP complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG .
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - q. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.

2.3 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.4 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

- 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.5 RS-485 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.6 LOW-VOLTAGE CONTROL CABLE

A. Paired Lock Cable: NFPA 70, Type CMG.

- 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
- 2. PVC insulation.
- 3. Unshielded.
- 4. PVC jacket.
- 5. Flame Resistance: Comply with UL 1581.

- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.7 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.8 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG.

- Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.9 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.10 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.11 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

28 05 13 - 8

CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

2.12 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - Do not install bruised, kinked, scored, deformed, or abraded cable.
 Do not splice cable between termination, tap, or junction points.

Remove and discard cable if damaged during installation and replace it with new cable.

- Cold-Weather Installation: Bring cable to room temperature before de-reeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a nonhardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.

- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - Install plenum cable in environmental air spaces, including plenum ceilings.
 - Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 - Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is not permitted.
 - 3. Signaling Line Circuits: Power-limited fire alarm cables may be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any

enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:

- 1. Class 1 remote-control and signal circuits, No. 14 AWG.
- 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
- Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.

- C. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.
- D. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.

- 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISTING WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -
SECTION 28 05 26

GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.
- D. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 - Certification that the materials and installation are in accordance with the drawings and specifications.

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07.....for Hard-Drawn Copper Wire

B3-07..... Standard Specification for Soft or Annealed Copper Wire

- B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

C2-07.....National Electrical Safety Code

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

99-2015.....Health Care Facilities

E. Underwriters Laboratories, Inc. (UL): 44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.

B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 - Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide (3/8 inch x ¾ inch).

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).

- 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
- 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.6 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.

3.7 GROUNDING FOR RF/EMI CONTROL

- A. Install bonding jumpers to bond all conduit, cable trays, sleeves and equipment for low voltage signaling and data communications circuits. Bonding jumpers shall consist of 100 mm (4 inches) wide copper strip or two 6 mm² (10 AWG) copper conductors spaced minimum 100 mm (4 inches) apart. Use 16 mm² (6 AWG) copper where exposed and subject to damage.
- B. Comply with the following when shielded cable is used for data circuits.
 - 1. Shields shall be continuous throughout each circuit.
 - 2. Connect shield drain wires together at each circuit connection point and insulate from ground. Do not ground the shield.
 - 3. Do not connect shields from different circuits together.

4. Shield shall be connected at one end only. Connect shield to signal reference at the origin of the circuit. Consult with equipment manufacturer to determine signal reference.

3.8 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 - Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- 2. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

SECTION 28 05 28.33

CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

- I. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
- J. Section 31 20 11 EARTHWORK (SHORT FORM). For bedding of conduits.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquid-tight flexible metal conduit.
- G. NBR: Acrylonitrile-butadiene rubber.
- H. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the COR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work. 1. Custom enclosures and cabinets.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- H. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 16 Section "Electrical Supports and Seismic Restraints." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- I. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 50-07..... Enclosures for Electrical Equipment 360-09.....Liquid-Tight Flexible Steel Conduit 467-07.....Grounding and Bonding Equipment 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit 514C-02......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2 CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

28 05 28.33 - 4

CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high-density polyethylene (PE).

2.3 WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4 CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - 3. Set screw fittings: Not permitted for use with aluminum conduit.
- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.

28 05 28.33 - 5

CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

- 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
- 4. Indent type connectors or couplings are prohibited.
- Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- F. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 2. As recommended by the conduit manufacturer.
- G. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- H. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

2.10 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.11 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Plastic. Include two for each sealing element.
 - Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.12 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, non-staining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic

hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.

- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - 7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.

- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.

- b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
- c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.

G. Painting:

- 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
- 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper green ground bonding jumper installed.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of

the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.

- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

J. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

SECTION 28 08 00

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent. B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed

28 08 00 - 2

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and

28 08 00 - 3

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

----- END -----

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS.
- B. This Section includes a Physical Access Control System consisting of a system server, operating system and application software, and fieldinstalled Controllers connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors.
 - d. Surge and tamper protection
 - c. Readers
 - d. Push-button switches
 - e. Monitoring of field-installed devices
 - f. Reporting
 - 2. Security:
 - a. Time and attendance.
 - b. Key tracking.
- C. System Architecture:
 - Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.
- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Field installed controllers,
 - 2. Card readers,
 - 3. Supportive information system,
 - 4. Door locks and sensors,
 - 5. Power supplies,

- 6. Interfaces with:
 - a. Automatic door operators,
 - b. Fire Protection System,
 - c. Building Management System,
- F. Information system supporting PACS, network switches, routers and controllers shall comply with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems).
- G. PACS system shall support:
 - 1. Multiple credential authentication modes,
 - 2. Bidirectional communication with the reader,
 - Incident response policy implementation capability; system shall have capability to automatically change access privileges for certain user groups to high security areas in case of incident/emergency.
- H. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- I. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.
- J. Number of points:
 - 1. PACS shall support multiple autonomous regional servers that can connect to a master command and controller server.
 - Unlimited number of access control readers, unlimited number of inputs or outputs, unlimited number of client workstations, unlimited number of cardholders.
 - 3. Total system solution to enable enterprise-wide, networked, multiuser access to all system resources via a wide range of options for connectivity with the customer's existing LAN and WAN.
- K. Console Network:

- 1. Console network, if required, shall provide communication between a central station and any subordinate or separate stations of the system. Where redundant central or parallel stations are required, the console network shall allow the configuration of stations as master and slave. The console network may be a part of the field device network or may be separate depending upon the manufacturer's system configuration.
- L. Network(s) connecting PCs and Controllers shall comply with NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems) and consist of one or more of the following:
 - Local area, IEEE 802.3 Fast Ethernet 100 BASE-TX, star topology network based on TCP/IP.
 - 2. Direct-connected, RS-232 cable from the COM port of the Central Station to the first Controller, then RS-485 to interconnect the remainder of the Controllers at that Location.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- E. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- F. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- G. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- H. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- I. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- J. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- K. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.

- L. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- M. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY. For requirements for commissioning, systems readiness checklists, and training.
- N. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- O. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.
- P. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.4 SUBMITTALS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.5 APPLICABLE PUBLICATIONS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.6 DEFINITIONS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.7 COORDINATION

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.8 MAINTENANCE & SERVICE

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door.

- C. Physical Access Control System shall provide access to following Security Areas:
 - 1. Limited
- D. PACS shall provide:
 - 1. Two authentication factors for access to Limited security areas.
- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.
- G. Number of Locations: Support unlimited number of separate Locations using a single PC with combinations of direct-connect, dial-up, or TCP/IP LAN connections to each Location.
 - Each Location shall have its own database and history in the Central Station. Locations may be combined to share a common database.
- H. System Network Requirements:
 - Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
 - Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.
 - 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.
- I. Field equipment shall include Controllers, sensors, and controls. Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and

the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records. Controllers are classified as alarm-annunciation or entry-control type.

- J. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- K. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect singleand double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multibit and burst error conditions. Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.
- L. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.
- M. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- N. References to industry and trade association standards and codes are minimum installation requirement standards.
- O. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.10 EQUIPMENT AND MATERIALS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Controllers (Data Gathering Panel)
 - 2. Keypads

- 3. Card Readers
- 4. Interfaces
- 5. Door Hardware interface
- 6. Cables

2.2 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the Central Station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network with dc line supervision on each of its alarm inputs.
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal, and for conditions as described in UL 1076 for line security equipment by monitoring for abnormal open, grounded, or shorted conditions using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of 10 percent or more for longer than 500ms.
 - Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
 - c. Outputs: Managed by Central Station software.
 - Auxiliary Equipment Power: A GFCI service outlet inside the Controller enclosure.
- E. Entry-Control Controller:
- Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
- 2. Inputs:
 - a. Data from entry-control devices; use this input to change modes between access and secure.
 - b. Database downloads and updates from the Central Station that include enrollment and privilege information.
- 3. Outputs:
 - a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
 - b. Grant or deny entry by sending control signals to portal-control devices.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.

- d. Door Prop Alarm: If a portal is held open for longer than 20 seconds, alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.
 - a. Store up to 1000 transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Premium, valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full 1-year warranty and a pro rata 19-year warranty. With single-stage, constantvoltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltagecurrent, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - c. Backup Power Supply Capacity: 90 minutes of battery supply.Submit battery and charger calculations.
 - d. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:

- 1) Trouble Alarm: Normal power off load assumed by battery.
- 2) Trouble Alarm: Low battery.
- 3) Alarm: Power off.

2.3 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be 800ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semi-flush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- D. Display: LED or other type of visual indicator display shall provide visual status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, card and/or PIN, card and/or

28 13 00 - 11 PHYSICAL ACCESS CONTROL SYSTEM biometrics, card and/or pin and/or biometrics, supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.

- J. Shall be housed in an aluminum bezel with a wide lead-in for easy card entry.
- K. Shall contain read head electronics, and a sender to encode digital door control signals.
- L. LED's shall be utilized to indicate card reader status and access status.
- M. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- N. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.
- O. Shall have a minimum of two programmable inputs and two programmable outputs.
- P. All card readers that utilize keypad controls along with a reader and shall meet the following specifications:
 - Entry control keypads shall use a unique combination of alphanumeric and other symbols as an identifier. Keypads shall contain an integral alphanumeric/special symbols keyboard with symbols arranged in ascending ASCII code ordinal sequence. Communications protocol shall be compatible with the local processor.
- Q. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected. The design of the keypad display or keypad enclosure shall limit the maximum horizontal and vertical viewing angles of the keypad. The maximum horizontal viewing angle shall be plus and minus five (5) degrees or less off a vertical plane perpendicular to the plane of the face of the keypad display. The maximum vertical viewing angle shall be

plus and minus 15 degrees or less off a horizontal plane perpendicular to the plane of the face of the keypad display.

- Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
- 2. Shall be powered from the source as designed and shall not dissipate more than 150 Watts.
- Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
- 4. Shall provide a means for users to indicate a duress situation by entering a special code.
- R. PIV Contact Card Reader
 - Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.
 - Programming Voltage: PIV Readers shall not generate a Programming Voltage.
 - 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
 - Retrieval Time: Retrieval time¹ for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
 - Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.

- 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read character TA1 of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.
- S. Contactless Smart Cards and Readers
 - Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
 - The readers shall have "flash" download capability to accommodate card format changes.
 - 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
 - The card reader shall be contactless and meet or exceed the following technical characteristics:
 - a. Data Output Formats: FIPS 201 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 - 200 bits. FIPS 201 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 - 232 bits. All Wiegand formats or the upgradeability from Low to Medium Levels can be field configured with the use of a command card.
 - b. FIPS 201 readers shall be able to read, but not be limited to, DESfire and iCLASS cards.
 - c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1" to 2" (2.5 - 5 cm).
 - d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
 - f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.

- g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B communication signal interfaces as defined in ISO/IEC 14443-2:2001.
- h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
- i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.
- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.
- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (~106 kbits/s), fc/64(~212 kbits/s), and configurable to allow activation/deactivation.
- Readability Range: The reader shall not be able to read PIV card more than 10cm(4inch) from the reader

2.4 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (± 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25×1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

- C. Delayed Egress (DE)
 - 1. General:
 - a. The delayed egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delayed egress-locking device. The delayed egress device shall be available to support configurations with both rated and non-rated fire doors. The delayed egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system.
 - The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode
 - 1) The delayed egress device shall be a SDC 101V Series Exit Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

- 2) Delayed egress doors will have bond sensors.
- 3) Delayed egress activation shall also trigger CCTV call -up.
- b. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- c. Reset Mode
 - The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
 - The delay egress device shall automatically reset upon fire alarm system reset.
 - 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.
- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.

- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs

 The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read: EMERGENCY EXIT. PUSH UNTIL ALARM SOUNDS DOOR CAN BE OPENED,

- IN 30 SECONDS.
- Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control

interface shall support extended periods of automated and/or manual lock and unlock cycles.

E. Crash Bar:

- 1. Emergency Exit with Alarm (Panic):
 - Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one(1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
 - e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
 - f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.
 - g. Normal Exit:
 - Entry control portals shall include panic bar non-emergency exit hardware as designed.
 - Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
 - Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
 - 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
 - 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

pass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.

- F. Key Bypass:
 - 1. Shall be utilized for all doors that have a mortise or rim mounted door hardware.
 - Each door shall be individually keyed with one master key per secured area.
 - 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
 - All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
 - 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.
- G. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - Door closing force shall be adjustable to ensure adequate closing control.
 - 3. Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
 - Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
 - 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
 - Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.

- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.
 - d. Have push button controls for setting door close and door open positions.
 - e. Have open obstruction detection and close obstruction detection built into the unit.
 - f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
 - g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
 - h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.

H. Door Status Indicators:

- 1. Shall monitor and report door status to the SMS.
- 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in place of a DPDT switch.
 - d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.

e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.5 WIRES AND CABLES

A. Refer to section 28 05 13 "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY".

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.

- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.
 - 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 - 7. Prepare and install alarm graphic maps.
 - 8. Complete system diagnostics and operation verification.
 - 9. Prepare a specific plan for system testing, startup, and demonstration.
 - Develop acceptance test concept and, on approval, develop specifics of the test.
 - Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- D. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- E. Install cables without damaging conductors, shield, or jacket.
- F. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- G. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet

28 13 00 - 24 PHYSICAL ACCESS CONTROL SYSTEM (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).

- 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
- 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed 250 feet (75 m).
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet (8 m).

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.

- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
 - 1. EPPS:
 - a. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
 - b. For additional PACS requirements as they relate to the EPPS, refer to Section 28 26 00, ELECTRONIC PERSONAL PROTECTION SYSTEM.
- E. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- F. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- G. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- H. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- I. Existing Equipment:
 - The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21

to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.

- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- J. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.

- K. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- L. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- M. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.
 - 2. Terminate input signals as required.
 - 3. Program and address the reader as per the design package.
 - Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.
- N. Door Status Indicators:
 - Install all signal input and output cables as well as all power cables.
 - 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
 - Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).
- O. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- P. System Start-Up:
 - The Contractor shall not apply power to the PACS until the following items have been completed:

- a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
- b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
- c. System wiring has been tested and verified as correctly connected as indicated.
- d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
- e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
- Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.
- Q. Supplemental Contractor Quality Control:
 - The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
 - The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
 - 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
 - 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components

and equipment installation, including connections, and to assist in field testing. Report results in writing.

- B. Testing Agency: Engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards - Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
 - 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.10 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.11 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY

SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.12 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.
- D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Video Surveillance System, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes video surveillance system consisting of cameras, data transmission wiring, and a control station with its associated equipment.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- G. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- I. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- J. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for commissioning, systems readiness checklists, and training.
- K. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system integration.
- L. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).
- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): a encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. ips: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: a video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.
- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:

- Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
- The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of

surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, Shop Drawings, Product Data, and Samples, and Section 02 41 00, Demolition Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.

- Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
- 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.

- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.
- Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- F. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- G. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV

Cameras

Construct Infill of Building 26 and Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 01-01-21 375A-76..... Electrical Performance Standards for CCTV Monitors C. Institute of Electrical and Electronics Engineers (IEEE): C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits 802.3af-08.....Power over Ethernet Standard D. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems E. National Electrical Contractors Association (NECA): 303-2005..... TInstalling Closed Circuit Television (CCTV) Systems F. National Fire Protection Association (NFPA): 70-17.....Article 780-National Electrical Code G. Federal Information Processing Standard (FIPS): 140-2-02.....Security Requirements for Cryptographic Modules H. Underwriters Laboratories, Inc. (UL): 983-06.....Standard for Surveillance Camera Units 3044-01.....Standard for Surveillance Closed Circuit Television Equipment 1.7 COORDINATION A. Coordinate arrangement, mounting, and support of video surveillance

- equipment:
- To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

- A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
- B. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- C. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

- A. All Cameras will be EIA 330 and UL 1. Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.
- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:
 - Will be charge coupled device (CCD cameras and shall conform to National Television System Committee (NTSC) formatting.
 - 2. Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and are to be utilized to complement the fixed cameras.

- 3. Shall be powered over Ethernet. Network switches supporting PoE cameras shall have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
- 4. Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.
- 5. Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.
- 6. Shall be programmed to digitally flip from color to black and white at dusk and vice versa at low light conditions.
- Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.
- P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.
- 9. Dummy or fake cameras will not be utilized at any time.
- 10. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

2.3 VIDEO CAMERAS

- A. The cameras shall be high-resolution color video cameras with wide dynamic range capturing capability.
- B. The camera shall meet or exceed the following specifications:
 - The image capturing device shall be a 1/3-inch image sensor designed for capturing wide dynamic images.
 - a. The image capturing device shall have a separate analog-todigital converter for every pixel.
 - b. The image capturing device shall sample each pixel multiple times per second.
 - c. The dynamic range shall be 95 dB typical and 120 dB maximum.
 - 3. The camera shall optimize each pixel independently.
 - The camera shall have onscreen display menus for programming of the camera's settings.
 - 5. The signal system shall be NTSC.
- C. The camera shall have composite video output.

- D. The camera shall come with a manual varifocal lens.
- E. The video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- F. Fixed Color Camera
 - 1. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. Comply with UL 639.
 - 3. Pickup Device: 1/3 CCD interline transfer.
 - 4. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.
 - 5. With AGC, manually selectable on or off.
 - Manually selectable modes for backlight compensation or normal lighting.
 - Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
 - 8. White Balance: Auto-tracing white balance, with manually selectable fixed balance option.

Pickup device	1/3" interline transfer CCD
Total pixels	NTSC: 811(H) x 508(V)
Effective pixels	NTSC: 768(H) x 494(V)
Resolution	500 TV lines
Sync. System	Internal Sync
Scanning system	NTSC: 525 Lines/60 Fields
S/N ratio	More than 48 dB
Electronic shutter	Auto 1/60 (1/50) ~1/100,000 sec.
Min. illumination	0.2 lux F2.0
Video output	Composite 1.0 Vp-p/75 ohm
White balance	Auto
Automatic gain control	ON
Frequency horizontal	NTSC: 15.734 KHz
Frequency vertical	NTSC: 59.94Hz
Lens type	Board lens/[DC]/[AI] varifocal lens
Focal length	3-12mm

9. Fixed Color Cameras Technical Characteristics:

Power source	DC12V/500mA or AC24/500mA
Power consumption	< 3W (Max)

- 10. Fixed color camera shall be enclosed in dome and have board mounted varifocal lens.
- 11. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter

2.4 WIRES AND CABLES

- A. Shall meet or exceed the manufactures recommendation for power and signal.
- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- C. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that will allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.
- F. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.
- I. For all equipment that is carrying digital data between the Physical Access Control System and Database Management or at a remote monitoring station, shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable

shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance. The inputs and outputs shall be tested in both normal and common mode using the following wave forms:
 - 1. A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 watts and peak current of 60 amperes.
 - 2. An 8 microsecond rise time by 20 microsecond pulse width wave form with a peak voltage of 1000 volts and peak current of 500 amperes.
- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.
 - 9. Signal Cables:
 - a. Signal wiring for PoE cameras depends on the distance the camera is being installed from either a hub or the server.
 - b. If the camera is up to 300 ft from a hub or the server, then use a shielded UTP category 6 (CAT-VI) cable a with standard RJ-45 connector at each end. The cable with comply with the Power over Ethernet, IEEE802.3af, Standard.
 - d. Provide a separate cable for power.
 - e. CAT-6 Technical Characteristics:

Number of Pairs	4
Total Number of Conductors	8
AWG	22 - 24
Stranding	Solid
Conductor Material	BC - Bare Copper
Insulation Material	PO - Polyolefin
Overall Nominal Diameter	.230 in.
IEC Specification	11801 Category 6
TIA/EIA Specification	568-C.2 Category 6
Max. Capacitance Unbalance	(pF/100 m) 150 pF/100 m
Nom. Velocity of Propagation	70 %
------------------------------	-------------------------
Max. Delay	(ns/100 m) 538 @ 100MHz
Max. Delay Skew	(ns/100m) 45 ns/100 m
Max. Conductor DC Resistance	9.38 Ohms/100
Max. DCR Unbalance@ 20°C	3 %
Max. Operating Voltage	UL 300 V RMS

PART 3 - EXECUTION

3.1. GENERAL

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
 - The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- C. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.
- D. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The

28 23 00 - 13 VIDEO SURVEILLANCE

Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.

- E. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- F. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

- A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The VASS System will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a complete network.
- E. For integration purposes, the VASS System shall be integrated where appropriate with the following associated security subsystems:1. PACS:

- a. Provide 24-hour coverage of all entry points to the perimeter and agency buildings, as well as all emergency exits utilizing a fixed color camera.
- b. Record cameras on a 24 hours basis.
- c. Be programmed go into an alarm state when an emergency exit is opened and notify the Physical Access Control System and Database Management of an alarm event.
- 2. EPPS:
 - a. Provide a recorded alarm event via a color camera that is connected to the EPPS system by either direct hardwire or a security system computer network.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated and notify the Physical Access Control System and Database Management of an alarm event.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. A complete VASS System shall be comprised of, but not limited to, the following components:
 - 1. Cameras
 - 2. Lenses
 - 3. Video Display Equipment
 - 4. Camera Housings and Mounts
 - 5. Controlling Equipment
 - 6. Recording Devices
 - 7. Wiring and Cables
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a

report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.

- J. Existing Equipment
 - The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
 - 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
 - The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
 - 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.

- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.
- N. Cameras:
 - 1. Install the cameras with the focal length lens as indicated for each zone.
 - 2. Connect power and signal lines to the camera.
 - 3. Aim camera to give field of view as needed to cover the alarm zone.
 - 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
 - 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
 - Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
 - PTZ cameras shall have all preset positions and privacy areas defined and programmed.
- O. Switcher:
 - Install the switcher as shown in the design and construction documents, and according to the OEM.

- 2. Connect all subassemblies as specified by the manufacturer and as shown.
- Connect video signal inputs and outputs as shown and specified; terminate video inputs as required.
- 4. Connect alarm signal inputs and outputs as shown and specified; connect control signal inputs and outputs for ancillary equipment or secondary control/monitoring sites as specified by the manufacturer and as shown.
- 5. Connect the switcher CPU and switcher subassemblies to AC power.
- 6. Load all software as specified and required for an operational VASS System configured for the site and building requirements, including data bases, operational parameters, and system, command, and application programs.
- 7. Provide the original and 2 backup copies for all accepted software upon successful completion of the endurance test.
- 8. Program the video annotation for each camera.
- P. Video Encoder/Decoder
 - Install the Video Encoder/Decoder per design and construction documents, and as specified by the OEM.
 - 2. Connect analog camera inputs to video encoder.
 - 3. Connect network camera to video decoder.
 - 4. Connect video encoder to VASS network.
 - 5. Connect video decoder to video matrix, DVR, monitor etc.
 - 6. Connect unit to AC power (UPS).
 - Configure the video encoder/decoder per manufacturer's recommendation and project requirements.
- Q. Network Switch:
 - Install the network switch per design and construction documents, and as specified by the OEM.
 - 2. Connect network switch to AC power (UPS).
 - 3. Connect network cameras to network switch.
 - Configure the network switch per manufacturer's recommendation and project requirements.
- R. Video Signal Equipment:
 - Install the video signal equipment as shown in the design and construction documents, and as specified by the OEM.

- 2. Connect video or signal inputs and outputs as shown and specified.
- 3. Terminate video inputs as required.
- 4. Connect alarm signal inputs and outputs as required.
- 5. Connect control signal inputs and outputs as required
- 6. Connect electrically powered equipment to AC power.
- S. Camera Housings, Mounts, and Poles:
 - Install the camera housings and mounts as specified by the manufacturer and as shown, provide mounting hardware sized appropriately to secure each camera, housing and mount with maximum wind and ice loading encountered at the site.
 - 2. Provide a foundation for each camera pole as specified and shown.
 - Provide a ground rod for each camera pole and connect the camera pole to the ground rod as specified in Division 26 of the VA Master Specification and the VA Electrical Manual 730.
 - Provide electrical and signal transmission cabling to the mount location via a hardened carrier system from the Physical Access Control System and Database Management to the device.
 - 5. Connect signal lines and AC power to the housing interfaces.
 - 6. Connect pole wiring harness to camera.

3.3 SYSTEM START-UP

- A. The Contractor shall not apply power to the VASS System until the following items have been completed:
 - 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.
 - 2. A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - System wiring has been tested and verified as correctly connected as indicated.
 - All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - 5. Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing

schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3.4 SUPPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -"COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".
- B. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS".

----END----

SECTION 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install complete Duress-Panic Alarms, Emergency Phones/ Call-Boxes, and Intercom Systems, data transmission wiring and a control station with its associated equipment, hereafter referred to as EPPS System.
- B. EPPS shall be integrated with monitoring and control system specified in Division 28 Section VIDEO SURVEILLANCE SYSTEMS that specifies systems integration.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for requirements for commissioning - systems readiness checklists, and training.
- L. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.

M. Section 28 23 00 - VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the EPPS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of

contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITALS

- A. Submit below items in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Master Specification Sections 01 33 23, SHOP DRAWING, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 48 x 48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- D. Shop drawings and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).

- e. Identify all pull box and conduit locations, sizes, and fill capacities.
- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a

Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.

G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI): ANSI S3.2-09.....Method for measuring the Intelligibility of

Speech over Communications Systems

- C. Department of Justice American Disability Act (ADA) 28 CFR Part 36.....2010 ADA Standards for Accessible Design
- D. Federal Communications Commission (FCC): (47 CFR 15) Part 15....Limitations on the Use of Wireless

Equipment/Systems

- E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code
- F. National Electrical Manufactures Association (NEMA) 250-08..... Enclosures for Electrical Equipment (1000 Volts Maximum)
- G. Underwriters Laboratories, Inc. (UL): 305-08.....Standard for Panic Hardware 444-08....Safety Communications Cables 636-01....Standard for Holdup Alarm Units and Systems
- H. Uniform Federal Accessibility Standards (UFAS), 1984

1.6 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.7 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, facility interface, and signal transmission equipment.
- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system

manufacturer certification for the designated service representative.

- D. Schedule of Work
 - The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, check and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- E. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day, 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from notification.
 Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.

- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- F. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- G. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- H. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.
- I. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- J. Software
 - The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month

warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.8 WARRANTY OF CONSTRUCTION.

- A. Warrant EPPS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.9 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. General requirements applicable to this section include:
 - 1. Performance Requirements,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Equipment and Materials,
 - 5. Electrical Power,
 - 6. Lightning, Power Surge Suppression, and Grounding,
 - 7. Electronic Components,
 - 8. Substitute Materials and Equipment, and
 - 9. Like Items.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. General:
 - All equipment shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
 - 2. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 hertz (Hz) or 60 Hz Alternating Current (AC) power system unless documented otherwise in subsequent sections listed within this spec. All equipment shall have a battery back-up source of power that will provide 12 hours (hrs.) of run time in the event of a loss of primary power to the security systems until a backup generator comes on-line.
 - 3. The EPPS systems shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
 - 4. The Contractor shall provide the Contracting Officer with written verification, that the type of wire/cable being provided is recommended and approved by the OEM. Cabling shall meet the interconnecting wiring requirements of NFPA 70, National Electrical Code. The Contractor is responsible for providing the correct protection cable duct and/or conduit and wiring.
 - 5. When interfacing with other communications or security subsystems the Contractor shall utilize interfacing methods that are approved by the Contracting Officer. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection; but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The interface point must adhere to all standards described herein.
 - Systems shall be scaleable, not vendor specific, and allow expansion as required.
 - 7. Wireless systems shall use ultrasonic, infrared and radio frequency waves to link distributed transmitters and receivers. Specific characteristics of particular facility will determine best

28 26 00 - 11 ELECTRONIC PERSONAL PROTECTION SYSTEM application. Contractor is responsible for determining best system using prediction program to determine where readable signals can be obtained and identify "dead spots".

- 8. All hardwired alarms, switches, and junction boxes shall be protected from tampering and include line supervision.
- 9. The installation and placement of intercom units and emergency-call boxes in strategic locations shall also require that signage be posted near these devices. The signage, in accordance with Section 10 14 00, SIGNAGE shall communicate the location of the device and its unique identification number, and brief instruction on how to access/use the device. The signage may appear on the device, on a pole or wall near the device location and shall be printed in a manner that is easily read during daylight and hours of darkness.

2.2 EQUIPMENT ITEMS

- A. All systems shall be designed to provide continuous electrical supervision of the complete and entire system.
- B. Noise filters and surge protectors shall be provided for all intercommunications equipment to ensure protection from primary AC power surges and to ensure noise interference is not induced into low voltage data circuits.
- C. All alarm and initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and Uninterrupted Power Supply (UPS) power circuits shall be supervised for any change in operating conditions (e.g. low battery, primary to back up battery, and UPS online). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the master control station and all remote locations.
- D. Control Unit: Shall consist of the components to constantly monitor and verify alarm activation; identify zone of activation and location of activation.
- E. Audible Signal Device for Duress-Panic: Provides alarm activation and audible sound for alarms, as well as supervisory and trouble signals that shall be distinctive.
- F. Assessment: This capability shall consist of electronic devices required to visually and audibly verify the validity of alarms.

Assessment also includes providing indication of tampering, fail-safe, low battery, and power losses.

- G. Alarm Monitoring and Reporting: Shall annunciate information to at least two (2) separate locations. The alarms shall maintain the capability to respond with local and remote visible and audible signals upon activation of an alarm. The alarms shall have the capability of operating in a silent mode, alerting personnel monitoring the system that the device has been activated.
- H. Duress-Panic Alarms:
 - Housing shall be a rugged corrosion-resistant housing of stainless steel or Acrylonitrile Butadiene Styrene (ABS) molded plastic or similar material that is weather and dust proof.
 - Actuating device shall include a minimum of a plunger button whose head is recessed from the face/front edge of the housing and be designed to avoid accidental activation using switch guard or multiple buttons (i.e., requires pressing two (2) buttons simultaneously)
 - Wireless stationary devices will meet the same specifications as Personal Duress/Panic Alarms.
 - 4. Alarm switch/button shall lock-in upon activation until manually reset with key or manufacture provided device.
 - 5. The switch shall be a positive-acting, double-pole, and double-throw switch.
 - Duress/Panic alarms shall meet UL 305 Standard for Panic Alarms. To reduce the possibility of false alarms and ensure installation functionality UL 636 Standard for Holdup Alarms standards shall be met.
 - 7. Alarms used for concealed application requires silent alarm notification to a monitoring station. They shall annunciate at the Physical Access Control System and Database Management, monitored by a central station or direct connect to local police, depending on local ordinance requirements.
 - 8. Shall be capable of being mounted for hand or foot use in a manner that is unable to be viewed by the public. Larger systems use a computer that intercepts and processes alarms and displays them on a monitor. The central computer can make an announcement over facility

hand held radios, pagers or telephones, or at the Physical Access Control System and Database Management so that the other security personnel can be immediately notified. These systems shall be hardwired.

- 9. Components:
 - a. Transmitter
 - b. Locator subsystem
 - c. Receiver
 - d. Software

10. Wiring will be four (4) conductor #18 American Wire Gauge (AWG).

- Temperature Range 0° to 110°F (-17.8°C to 43.3°C) Nominal Voltage 12 V DC @ 6 mA Current Max 8 mA Operational Voltage 7 V DC to 15 V DC Rated for 0,000 activations Operational life Battery Activations 500 Dual button plunger with Actuator activation lock LED Bi-color - on and activated
- 11. Duress-Panic Alarm Technical Characteristics:

2.3 INSTALLATION KIT

- A. General: A kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, barrier strips, wiring blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, etc., required to accomplish a neat and secure installation. Unfinished or unlabeled wire connections will not be allowed. Contractor shall turn over to the Contracting Officer all unused and partially opened installation kit boxes, coaxial cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, and physical installation hardware. This is an acceptable alternate to the individual spare equipment requirement as long as the minimum spare items are provided in this count. The following installation sub-kits are required as a minimum:
- B. System Grounding:

- The grounding kit shall include all cable in accordance with UL 444 Communications Cables, and installation hardware required. All grounding will be according to the NEC.
- 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields
 - b. Control Cable Shields
 - c. Data Cable Shields
 - d. Conduits
 - e. Cable Duct
 - f. Cable Trays
 - g. Power Panels
 - h. Connector Panels
- C. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- D. Wire And Cable: The wire and cable kit shall include all connectors and terminals, barrier straps, wiring blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- E. Equipment Interface: The equipment interface kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface Systems and Subsystems according to the OEM requirements and this specification.
- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this specification.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

A. System installation shall be installed in accordance with NFPA 731 Standards for the Installation of Electric Premises Security Systems and appropriate installation manual for each type of subsystem designed, engineered, and installed.

- B. The location and type of duress, intercom, or call-box to be installed will be in accordance with physical security requirements unique to each VA facility.
- C. For EPPS systems (i.e. use current panic/duress and emergency call boxes) that can operate through existing VA facility telephone system lines, software programming and hardware, refer to Section 27 51 23, INTERCOMMUNICATIONS AND PROGRAM SYSTEMS to integrate additional EPPS equipment.
- D. Concealed duress/panic devices shall be mounted in such a way that their location is only known by the person having knowledge of the activating device location. No wiring shall be exposed to identify the location of the activation device.
- E. Floor mounted duress alarms shall be attached to millwork on floor. When mounted under millwork, wiring shall be routed in millwork to conduit system via flexible conduit.
- F. Hard-wired switches shall be wired to individual alarm points within the Advanced Processing Controller (APC).
- G. Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
- H. Provisions shall be made for systems in high-noise areas or areas with electrical interference environments.
- I. Adjustment/Alignment/Synchronization: Contractor shall prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or programming. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.

3.2 WIRELINE DATA TRANSMISSION

A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.

- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
- C. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- D. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.
- E. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- F. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- G. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation.

Each cable shall be identified with type of signal being carried and termination points.

3.3 WIRING

- A. Wiring Method: Install cables in raceways except in accessible indoor ceiling spaces, and as otherwise indicated. Conceal raceways and wiring except in unfinished spaces.
- B. Wiring Method: Install cables concealed in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
- D. Splices, Taps, and Terminations: For power and control wiring, use numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- E. Grounding: Provide independent-signal circuit grounding recommended in writing by manufacturer.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation and supervise pretesting, testing, and adjusting of video surveillance equipment.
- B. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.
- C. Test Schedule: Schedule tests after pretesting has been successfully completed and system has been in normal functional operation for at least 14 days. Provide a minimum of 10 days' notice of test schedule.
- D. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.
- E. Remove and replace malfunctioning items and retest as specified above.

- F. Record test results for each piece of equipment.
- G. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions and to optimize performance of the installed equipment. Tasks shall include, but are not limited to, the following:
 - 1. Check cable connections.
 - 2. Check proper operation of detectors.
 - Recommend changes to walk trough detectors, X-ray machines, and associated equipment to improve Owner' utilization of security access detection system.
 - 4. Provide a written report of adjustments and recommendations.

3.6 CLEANING

A. Clean installed items using methods and materials recommended in writing by manufacturer.

3.7 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain electronic personal protection system (EPSS) equipment.
 - Train Owner's maintenance personnel on procedures and schedules for troubleshooting, servicing, and maintaining equipment.
 - 2. Demonstrate methods of determining optimum alignment and adjustment of components and settings for system controls.
 - 3. Review equipment list and data in maintenance manuals.
 - 4. Conduct a minimum of four hours' training.

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.9 TESTS AND TRAINING

 A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COR. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building 26 Infill and Renovation Areas shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message is existing to remain provided by the exiting fire alarm system.
 - Building 26 Infill and Renovation Areas shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm control unit.

signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. A fully addressable fire alarm system as an extension of an existing addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems, as shown within the boundary of the scope of work area, that are not identified as remaining shall be removed. All existing fire alarm conduit within the scope of work area that is not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.

- Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
- 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Class B in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
- 4. Initiating device circuits (IDC) shall be wired Class B in accordance with NFPA 72.
- 5. Signaling line circuits (SLC) within buildings shall be wired Class B in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Class B in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET level III fire alarm technician or stamped by a registered professional engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submit 5 copies in accordance with Section 01 33

> 28 31 00 - 3 FIRE DETECTION AND ALARM

Construct Infill of Building 26 And Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 10-11 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11,

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

- B. Drawings:
 - Prepare drawings using AutoCAD and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the preconstruction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the scope of work area, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per zone. Show all fire safety interfaces within the scope of work area. Show wiring Styles on the riser diagram for all circuits.
 - 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
 - 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (AutoCAD). As-built drawings (floor plans)

28 31 00 - 4 FIRE DETECTION AND ALARM shall show all new and/or existing conduit used for the fire alarm system.

- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - g. Include information indicating who will provide emergency service and perform post contract maintenance.
 - h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
 - i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall

also be provided in the manual. Provide the disk in a pocket within the manual.

- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- Two weeks prior to final inspection, deliver 5 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.

3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COR.
- G. Emergency Service:

- 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COR or his authorized representative.
- 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency callback hours is based on actual time spent on site and does not include travel time.
- H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.
- I. In the event that VA modifies the fire alarm system post-Acceptance but during the 5 year Guaranty Period Service period, Contractor shall be required to verify that the system, as newly modified or added, is consistent with the manufacturer's requirements; any verification
performed will be equitably adjusted under the Changes clause. The post-Acceptance modification or addition to the fire alarm system shall not void the continuing requirements under this contract set forth in the Guarantee Period Service provision for the fire alarm system as modified or added. The contract will be equitably adjusted under the Changes clause for such additional performance.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. VA Office of Construction & Facilities Management:VA Fire Protection Design Manual; June 2021, Eighth Edition
- C. National Fire Protection Association (NFPA):

NFPA 13Standard for the Installation of Sprinkler Systems, 2022 edition

NFPA 70.....National Electrical Code (NEC), 2020 edition NFPA 72....National Fire Alarm Code, 2022 edition NFPA 90A....Standard for the Installation of Air

Conditioning and Ventilating Systems, 2021 edition

NFPA 101.....Life Safety Code, 2021 edition

- D. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- E. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- F. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- G. International Code Council, International Building Code (IBC), 2021 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the

> 28 31 00 - 9 FIRE DETECTION AND ALARM

Construct Infill of Building 26 And Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 10-11 manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory

total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduits shall be 3/4 inch minimum.
- B. Wire:
 - Wiring shall be in accordance with NEC article 760, Section 28 05

 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as
 recommended by the manufacturer of the fire alarm system. All wires
 shall be color coded. Number and size of conductors shall be as
 recommended by the fire alarm system manufacturer, but not less than
 18 AWG for initiating device circuits and 14 AWG for notification
 device circuits.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch high.
 - Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - Existing fire alarm control unit will be expanded to cover scope of work area.

- Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.
- Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control unit.
- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
- D. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24-volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - 2. Power supply for smoke detectors shall be taken from the fire alarm control unit.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air

Construct Infill of Building 26 And Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 10-11 pressure switches and duct detectors shall be monitored as supervisory

signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.

- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
 - 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
 - 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
 - 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
 - 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.

I. Remote Transmissions:

- Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
- Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
 - 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
 - 4. Batteries shall be sealed, gel cell type.
 - 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.
- B. Batteries:
 - Battery shall be of the sealed, maintenance free type, 24-volt nominal.
 - Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 15 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.

28 31 00 - 13 FIRE DETECTION AND ALARM

- 3. Battery racks shall be steel with an alkali-resistant finish. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.
- C. Battery Charger:
 - Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
 - Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
 - 3. Shall have protection to prevent discharge through the charger.
 - Shall have protection for overloads and short circuits on both AC and DC sides.
 - 5. A trouble condition shall actuate the fire alarm trouble signal.
 - Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
 - Message shall identify building number, floor, zone, etc. on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
 - 3. The initial alarm received shall be indicated as such.
 - A selector switch shall be provided for viewing subsequent alarm messages.
 - 5. The display shall be UL listed for fire alarm application.
 - 6. Annunciators shall display information for all buildings connected to the system. Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COTR.

2.6 VOICE COMMUNICATION SYSTEM (VCS)

- A. General:
 - Existing voice communication system will be expanded to cover the scope of work area.

- Upon receipt of an alarm signal from the building fire alarm system, the VCS shall automatically transmit a pre-recorded fire alarm message throughout affected zone.
- A digitized voice module shall be used to store each prerecorded message.
- 4. The VCS shall supervise all speaker circuits, control equipment, remote audio control equipment, and amplifiers.
- B. Speaker Circuit Control Unit:
 - The speaker circuit control unit shall include switches to manually activate or deactivate speaker circuits grouped by floor in the system.
 - Speaker circuit control switches shall provide on, off, and automatic positions and indications.
 - The speaker circuit control unit shall include visual indication of active or trouble status for each group of speaker circuits in the system.
 - A trouble indication shall be provided if a speaker circuit group is disabled.
 - 5. A lamp test switch shall be provided to test all indicator lamps.
 - A single "all call" switch shall be provided to activate all speaker circuit groups simultaneously.
 - A push-to-talk microphone shall be provided for manual voice messages.
- C. Speaker Circuit Arrangement:
 - Speaker circuits shall be arranged such that there is one speaker circuit per smoke zone.
 - 2. Audio amplifiers and control equipment shall be electrically supervised for normal and abnormal conditions.
 - 3. Speaker circuits shall be either 25 VRMS or 70.7 VRMS with a minimum of 50 percent spare power available.
 - Speaker circuits and control equipment shall be arranged such that loss of any one speaker circuit will not cause the loss of any other speaker circuit in the system.
- D. Digitized Voice Module (DVM):
 - 1. The Digitized Voice Module shall provide prerecorded digitized evacuation and instructional messages. The messages shall be

professionally recorded and approved by the COTR prior to programming.

- 2. The DVM shall be configured to automatically output to the desired circuits following a 10-second slow whoop alert tone.
- Prerecorded magnetic taped messages and tape players are not permitted.
- 4. The digitized message capacity shall be no less than 15 second in length.
- 5. The digitized message shall be transmitted 3 times.
- 6. The DVM shall be supervised for operational status.
- 7. Failure of the DVM shall result in the transmission of a constant alarm tone.
- 8. The DVM memory shall have a minimum 50 percent spare capacity after those messages identified in this section are recorded. Multiple DVM's may be used to obtain the required capacity.
- E. Audio Amplifiers:
 - Audio Amplifiers shall provide a minimum of 50 Watts at either 25 or 70.7 VRMS output voltage levels.
 - 2. Amplifiers shall be continuously supervised for operational status.
 - 3. Amplifiers shall be configured for either single or dual channel application.
 - Each audio output circuit connection shall be configurable for Style X.
 - 5. A minimum of 50 percent spare output capacity shall be available for each amplifier.
- F. Tone Generator(s):
 - Tone Generator(s) shall be capable of providing a distinctive 3pulse temporal pattern fire alarm signal as well as a slow whoop.
 - Tone Generator(s) shall be continuously supervised for operational status.

2.7 ALARM NOTIFICATION APPLIANCES

- A. Bells:
 - Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
 - 2. Unless otherwise shown on the drawings, shall be 6 inches diameter and have a minimum nominal rating of 80 dBA at 10 feet.
 - 3. Mount on removable adapter plates on outlet boxes.

28 31 00 - 16 FIRE DETECTION AND ALARM

 Bells located outdoors shall be weatherproof type with metal housing and protective grille.

5. Each bell circuit shall have a minimum of 20 percent spare capacity.

- B. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
 - Four inches or 8 inches cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- C. Strobes:
 - Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - Strobes may be combined with the audible notification appliances specified herein.
- D. Fire Alarm Horns:
 - Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.
 - 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
 - 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.8 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.
 - Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.

- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.
- D. Water Flow and Pressure Switches:
 - Wet pipe water flow switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.

Construct Infill of Building 26 And Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 10-11 2. All new water flow switches shall be of a single manufacturer and

series and non-accumulative retard type. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.

2.9 SUPERVISORY DEVICES

A. Duct Smoke Detectors:

- Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
- 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.

B. Sprinkler and Standpipe System Supervisory Switches:

- Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
- 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
- 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
- 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.

Construct Infill of Building 26 And Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 10-11 5. The entire installed assembly shall be tamper-proof and arranged to

cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.

2.10 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit. Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

28 31 00 - 20 FIRE DETECTION AND ALARM

2.13 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Fire alarm strobes 2
 - 2. Fire alarm speakers 2
 - 3. Fire alarm speaker/strobes 2
 - 4. Smoke detectors 2
 - 5. Monitor modules 1
 - 6. Control modules 1
- B. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- C. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COTR.
- D. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.14 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28

> 28 31 00 - 21 FIRE DETECTION AND ALARM

Construct Infill of Building 26 And Renovate Specialty Care Clinics VA 589-704 Robert J. Dole VAMC 100% Bid Set 10-11 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY,

and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.

- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
- G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches above the floor or 6 inches below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches clearance from side obstructions.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system in Building 100. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building 26.
 - 3. Release only the magnetic door holders in the smoke zone on the floor from which alarm was initiated after the alert signal.
 - Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.
- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that floor in that smoke zone.
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- H. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the

> 28 31 00 - 23 FIRE DETECTION AND ALARM

adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.

- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

A. Reacceptance of the modified fire alarm system shall be completed in accordance with NFPA 72 and at a minimum the following shall be tested: a. All functions known to be affected by the change, or identified by a means that indicates changes, shall be 100 percent tested.

> b. In addition, 10 percent of initiating devices that are not directly affected by the change, up to a maximum of 50 devices, also shall be tested and correct system operation shall be verified.

c. A revised record of completion in accordance with NFPA 72 Section 7.5.6 shall be prepared to reflect these changes.

B. Prior to final reacceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all

system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.

C. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - END - -

28 31 00 - 25 FIRE DETECTION AND ALARM

SECTION 31 20 11 EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1:DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
 - 2. Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
 - 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from reference borings and design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D698
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.

- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Classified Excavation: Removal and disposal of all material not defined as rock.
- C. Rock Excavation:
 - 1. Solid ledge rock (igneous, metamorphic, and sedimentary rock).
 - 2. Bedded or conglomerate deposits so cemented as to present characteristics of solid rock which cannot be excavated without blasting; or the use of a modern power excavator (shovel, backhoe, or similar power excavators) of no less than 0.75 m3 (1 cubic yard) capacity, properly used, having adequate power and in good running condition.
 - 3. Boulders or other detached stones each having a volume of 0.4 m3 (1/2 cubic yard) or more.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will include authorized excavation for rock, authorized excavation of satisfactory subgrade soil, and the volume of loose, scattered rocks and boulders collected within the limits of the work; allowance will be made on the same basis for selected backfill ordered as replacement. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION:

- A. Measurement: Cross section and measure the uncovered and separated materials, and compute quantities by the Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. Do not measure quantities beyond the following limits:
 - 1. 300 mm (12 inches) outside of the perimeter of formed footings.
 - 2. 600 mm (24 inches) outside the face of concrete work for which forms are required, except for footings.
 - 3. 150 mm (6 inches) below the bottom of pipe and not more than the pipe diameter plus 600 mm (24 inches) in width for pipe trenches.
 - The outside dimensions of concrete work for which no forms are required (trenches, conduits, and similar items not requiring forms).
- B. Payment for Differing Site Conditions: When rock excavation, as classified, is encountered, the contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.
 - 2. Excavation method.
 - 3. Labor.
 - 4. Equipment.
 - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
 - 6. Plot plan showing elevations.

- C. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- D. Furnish to Resident Engineer, soil samples, suitable for laboratory tests, of proposed off site or on site fill material.
- E. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Nursery and Landscape Association (ANLA): 2004.....American Standard for Nursery Stock
- C. American Association of State Highway and Transportation Officials (AASHTO):

T99-10......Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg [10 lb]

Rammer and a 457 mm (18 inch) Drop

- D. American Society for Testing and Materials (ASTM): C33-03.....Concrete Aggregate D698-e1....Laboratory Compaction Characteristics of Soil Using Standard Effort D1140-00....Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve D1556-00....Standard Test Method for Density and Unit
 - Weight of Soil in Place by the Sand-Cone Method D1557-09.....Laboratory Compaction Characteristics of Soil Using Modified Effort
 - D2167-94 (2001).....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method

D2487-06.....Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System) D6938-10.....Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

E. Standard Specifications of Kansas State Department of Transportation, latest revision.

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Fills: Materials approved from on site and off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15 but at least 5, and a maximum Liquid Limit of 40. See Geotechnical Report.
- B. Granular Fill:
 - Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, 75 micrometers (No. 200) sieve, and no more than 2 percent by weight passing the 4.75 mm (No. 4) size sieve or coarse aggregate Size 57.
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No. 4).
- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 19 mm to 32 mm (3/4 inch to 1 1/4 inches) excluding top growth. There shall be no broken pads and torn or uneven ends

- F. Requirements For Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site. Material shall not be brought on site until tests have been approved by the Resident Engineer.
- G. Buried Warning and Identification Tape: Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red:ElectricYellow:Gas, Oil, Dangerous MaterialsOrange:Telephone and Other CommunicationsBlue:Water SystemsGreen:Sewer SystemsWhite:Steam SystemsGray:Compressed Air

H. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.

- I. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastictape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m(3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- J. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inches) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inches) diameter, and nonperishable solid objects which will be a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 4500 mm (15 feet) of new construction and 2250 mm (7'-6") of utility lines if such removal is approved in advance by the Resident Engineer. Remove materials from the Medical Center. Trees and shrubs, shown to be transplanted, shall be dug with a ball of earth and burlapped in accordance with the latest issue of the, "American Standard for Nursery Stock", of the American Association of Nurserymen, Inc. Transplant trees and shrubs to a permanent or temporary position within two hours after digging. Maintain trees and shrubs held in temporary locations by watering as necessary and feeding semi-annually with liquid fertilizer with a minimum analysis of 5 percent nitrogen, 10 percent phosphorus and 5 percent potash. Maintain plants moved to permanent positions as specified for plants in

temporary locations until the conclusion of the contract. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.

- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.
 - 1. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all

removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to it's angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.
 - 2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill support in compliance with Specification Section 31 23 23.33, FLOWABLE FILL, under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. When removed disturbed material is located where it is not possible to install and properly compact disturbed subgrade material with mechanically compacted sand or gravel, the Resident Engineer should be contacted to consider the use of flowable fill. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for

restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 0.61 m (2 feet) below the working level.

- D. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft material to solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete, poured separately from the footings.
 - Do not tamp earth for backfilling in footing bottoms, except as specified.
- E. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3)

feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

- g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D 2487.
 - Clean, coarsely graded natural gravel, crushed stone or a combination thereof identified in accordance with Kanas DOT specifications.
- 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of the pipe shall be 600 mm (24 inches) for up to and including 300 mm

(12 inches) diameter and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.

- b. The bottom quadrant of the pipe shall be bedded on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
 - 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one-sixth of pipe diameter below the pipe of 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.
- c. Place and compact as specified the remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- d. Use granular fill for bedding where rock or rocky materials are excavated.
- e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

- g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe.
 - Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
 - Clean, coarsely graded natural gravel, crushed stone or a combination thereof identified in accordance with Kanas DOT specifications
- F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the Resident Engineer as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the Contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not. Testing of the soil shall be performed by the VA Testing Laboratory. When unsuitable material is encountered and removed, the contract price and time will be adjusted in accordance with Articles, DIFFERING SITE

CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on meters (yardage) in cut section only.

- G. Finished elevation of subgrade shall be as follows:
 - Pavement Areas bottom of the pavement or base course as applicable.
 - Planting and Lawn Areas 100 mm (4 inches) below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, and pipes coming in contact with backfill have been installed, and inspected and approved by Resident Engineer.
- B. Proof-rolling Existing Subgrade: Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. After stripping, proof roll the existing subgrade with six passes of a dump truck loaded with 6 cubic meters (4 cubic yards) of soil or 13.6 meter tons (15 ton), pneumatic-tired roller. Operate the roller or truck in a systematic manner to ensure the number of passes over all areas, and at speeds between 4 to 5.5 km/hour (2 1/2 to 3 1/2 mph). When proof rolling, one-half of the passes made with the roller shall be in a direction perpendicular to the other passes. Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut as directed by the Resident Engineer and Material Testing Company.
- C. Placing: Place material in horizontal layers not exceeding 200 mm (8 inches) in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.

- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer to not less than 95 percent of the maximum density determined in accordance with the following test method ASTM D698. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure.
- E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas within the limits of the project site, selected by the Contractor or from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and

drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 3048 mm (10 feet)at a minimum five percent (5%) slope.
- D. The finished grade shall be 150 mm (6 inches) below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 150 mm (6 inches), unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.
- G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.5 LAWN AREAS:

A. General: Harrow and till to a depth of 100 mm (4 inches), new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.

- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 100 mm (4 inches). Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 100 mm (4 inches) of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.
- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 100 mm (4 inches) at a rate of 12 kg/100 m2 (25 pounds per 1000 square feet).
- D. Seeding: Seed at a rate of 2 kg/100 m2 (4 pounds per 1000 square feet) and accomplished only during periods when uniform distribution may be assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 225 kg/m (150 pounds per foot) of roller width.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 225 kg/m (150 pounds per foot) of the roller width to improve contact of sod with the soil.
- F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
 - 1. Remove waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center.
- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -